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PREFACE

This report describes in dctail innovative analytical rescarch aimed at dem-
onstrating the remarkable potential for structural optimization and acroclastic
tailoring present in swept tip composite helicopter rotor blades. [t js shown
that by a judicious combination of composite ply oricntation in the primary
blade structure and the SWcpt tip; remarkable reductions in the vibration levels
in forward flight, at the blade hub, can be achieved.

The rescarch described in this report was carried out in the Mechanical,
Acrospace and Nuclear Enginccring Department at UCLA, and it was funded
by NASA Grant NAG 1-833 with Dr. H. Adciman, from NASA Langley, as
the grant monitor. The authors hereby express their appreciation to the grant
monitor for his useful comments and suggestions.

The principal investigator for this sponsored research activity was Professor
Peretz P. Fricdmann. This constitutes essentially the first author’s Ph.D. dis-
scrtation; however, certain changes were made to the dissertation, so as to im-
prove it, before turning it into this report.

Finally, the authors gratefully acknowledge the help and advice received

during this research from Professor L.A. Schmit, Jr. and Dr. C. Venkatesan.
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SUMMARY

This report describes the development of an aeroelastic analysis capability
for composite hclicopter rotor blades with straight and swept tips, and its ap-
plication to the simulation of helicopter vibration reduction through structural
optimization. A ncw acroclastic modecl is developed in this study which is
suitable for composite rotor blades with swept tips in hover and in forward
flight. The hingeless blade is modeled by beam type finite clements. A single
finite clement is used to modcl the swept tip. Arbitrary cross-scctional shape,
gencrally anisotropic material behavior, transverse shears and out-of-plane
warping are included in the blade model. The nonlinear equations of motion,
derived using Hamilton’s principle, arc based on a moderatc dcflection theory.
Composite blade cross-scctional properties are calculated by a scparate linear,
two-dimensional cross section analysis. The aerodynamic loads arc obtained
from quasi-steady, incompressible aerodynamics, based on an implicit formu-
lation. The trim and steady state blade acroelastic response arc solved in a
fully coupled manncr. In forward flight, where the blade ecquations of motion
are periodic, the coupled trim-aeroelastic response solution is obtaincd from
the harmonic balance method. Subsequently, the periodic system is linearized
about the steady state response, and its stability is determined from Floquet
theory.

Numcrical results illustrating the influence of composite ply orientation, tip
sweep and anhedral on trim, vibratory hub loads, blade response and stability,
arc presented. It is found that composite ply orientation has a significant in-
flucnce on blade stability. The flap-torsion coupling associated with tip sweep
can inducc acroclastic instability due to frequency coalescence. This instability
can be removed by appropriate ply orientation in the composite construction.

The structural optimization study is conducted by combining the acroelastic
analysis developed in this study with an optimization package (DOT) to mini-
mize the vibratory hub loads in forward flight; subject to frequency and
aeroclastic stability constraints. The design variables, during optimization,
consist of the composite ply orientations, of the primary blade structure, and
tip sweep and anhedral. A parametric study showing the effects of tip sweep,
anhedral and composite ply orientation on blade aeroelastic behavior is used
as a valuable precursor in selecting the initial design for the optimization
studics. However, the most appropriate combination of the design variables,
for vibration reduction, can only be selected by the optimizer. Optimization
results show that remarkable reductions in vibration levels, at the hub, can be
achieved by a judicious combination of design variables; and that tip sweep is
the most dominant design variable for the cases considered.



Chapter 1

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Structural optimization of rotor blades for vibration reduction in forward
flight has been recognized by industry, rescarch organizations and academia
as an important arca of cndeavor because vibrations gencrated by the rotor
and their reduction represent a principal area of concern in the hclicopter de-
sign process. During the last decade design criteria for vibration levels at
typical locations in the fusclage, such as the pilot scat, have become increas-
ingly more stringent. The problem is further complicated by the highly inter-
disciplinary nature of hclicopter rotor blade design, where numerous
disciplines interact with cach other. The use of structural optimization for vi-
bration reduction in forward flight is particularly effective because it is aimed
at rcducing the vibration levels at the source, i.e., the main rotor, before it
propagates into the fusclage. Therefore it is not surprising that a considerable
amount of rescarch in this arca has been performed during the last
decade[28].

The majority of the structural optimization studics[28] have been restricted
to straight isotropic blades. Modern helicopter rotor blades have been built
of composite matcrials because such blades have better fatigue life and damage
tolerance than comparable metal blades. Furthermore, current manufacturing

processes for composite blades facilitate the incorporation of refined planforms



and airfoil gcometries in the blade design process. Blade manufacturing costs
are also lower because there are fewer machining operations. Composite rotor
blades also offer the potential for acroclastic tailoring using structural opti-
mization, which can produce remarkable payoffs in the multidisciplinary de-
sign of rotorcraft.

Rotor blades with swept tips, shown schematically in Fig. 1.1, experience
bending-torsion and bending-axial coupling effects due to sweep and anhedral.
Swept tips influence blade dynamics because they are located at the regions
of high dynamic pressure and relatively large elastic displacements. Thus, tip
sweep and tip anhedral provide an alternative for the acroclastic tailoring of
rotor blades. Swept tips are also cffective for reducing acrodynamic noise and
blade vibrations.

The general objectives of this rescarch are to develop a new aeroclastic
analysis capability for composite helicopter rotor blades with swept tips and
to conduct a structural optimization study combining this new analysis capa-
bility with a structural optimization package. In the next section, a review of
the state of the art is given in the areas pertinent to thesc objectives. The
specific objectives of this dissertation are then described in the last section of

the chapter.



1.2 LITERATURE REVIEW

1.2.1  Structural Modecling of Isotropic Rotor Blades

During the last twenty five years, it has been established that aeroelastic
stability of helicopter rotor blades is an inhcrently nonlincar phenomenon due
to moderate blade deflections[23,24,25,26,32,70,71]. The overwhelming ma-
jority of studies dealing with the structural modeling of helicopter rotor blades
usc a beam type model. Nonlincar beam kinematics, incorporating small
strains and finite (modcrate or large) rotations, are being used to account for
the coupling effects between axial, bending, and torsional deformations asso-
ciated with the centrifugal forces. In the derivation of the strain-displacement
relationships, a small strain assumption stating that strains are small as com-
parcd to unity is usually made. This is due to the requirement that helicopter
rotor blades must be designed to operate at strain levels well below the elastic
limit of the blade material due to fatigue life considerations.

A substantial number of the rotor blade models available have been re-
stricted to isotropic material properties. Several typical isotropic blade models
arc discussed below.

The first analytical model for the flap-lag-torsion of pretwisted nonuniform
rotor blades was developed by Houbolt and Brooks[51]. This model is based
on a linear theory and nonlinear displacement terms in the derivation were

neglected.  As a result, the bending-torsion coupling effects due to the ge-



omectrical nonlincaritics, which arc important for the rotor bladc analysis, were
absent in this model.

In order to incorporate the gcometrical nonlinearities due to the assumption
of small strains and finite rotations, on¢ should distinguish between the de-
formed and the undcformed configurations of the blade, and dcrive the trans-
formation between the triad of unit vectors associated with the undceformed
configuration of thc blade and the triad of unit vectors associated with the
deformed configuration of the blade. In the moderate deflection beam theories
developed by Hodges and Dowell[40], and Rosen and Fricdmann[76], the
transformations between the deformed and the undeformed triad of unit vec-
tors were derived which, together with the Euler-Bernoulli assumption that
planc scctions perpendicular to the undeformed elastic axis remain plane and
perpendicular to the clastic axis after deformation, were used in the derivation
of the nonlincar strain-displaccment relationships. These beam theories were
validated by comparing them to static tests performed in thc moderate de-
flection regime[21,77]. Subsequently these beam theories[40,76] which pro-
vided the structural operators, were combined with the appropriate inertial
and acrodynamic operators and uscd in the aeroelastic stability analyses of
isolated rotor blades[41,81]. A moderate deflection beam theory, similar to
those developed in Refs. 40 and 76, was also derived by Kaza and
Kvaternik[54].

During the derivations of a moderate deflection beam theory, a large num-
ber of nonlincar terms are generated. Many of them are relatively small due

to the assumption of small strains and moderzte rotations. Therefore, ordering



schemes can be uscful for identifying and ncglecting higher order nonlincar
terms in a consistent manner. Most ordering schemes[40,41,76,81] arc based
on assigning orders of magnitude to the non-dimensional physical parameters
governing the aeroeclastic problem in terms of the blade bending slopes, which
arc assumed to be of order €. A second order approximation implics that terms
of order ¢? are neglected compared to terms of order 1; and using such an ap-
proximation allows onc to derive, conveniently, dynamic cquations of equilib-
rium for the blade. A few latter studies[15,16,78,79] also used a third order
approximation where terms of order £* were neglected compared to terms of
order 1. It is important to note that such ordering schemes arc based on ex-
pericnce with actual blade configurations, and therefore a certain degree of
flexibility is uscd in their implementation.

Hodges[43] devcloped a nonlincar beam kinematics in which the assump-
tion of moderate rotation was removed. The only assumptions introduced on
the magnitudes of the kinematical parameters were that the extensional strain
was small (and negligiblc) compared to unity, and that the orientation angles
werc less than 90°. For rotations larger than 90°, Rodrigucs parameters were
uscd instead of orientation angles. This theory was used in the development
of the nonlinear equations of motion of a straight pretwisted rotating isotropic
bcam, which was subsequently employed as the theoretical basis for the beam
element used in the computer program GRASP[44]. This beam element

served as a valuable tool for examining the effects of higher order nonlinear

terms in the equations of motion.



1.2.2  Structural Modeling of Composite Rotor Blades

Modern helicopter rotor blades are frequently built of composite materials;
thercfore during the past few ycars, a substantial number of analytical studics
have becn aimed at the development of models which are suitable for the
structural and acroclastic analysis of composite rotor blades. The important
attributes of such a structural model require the capability to represent trans-
verse shear deformation, cross-sectional warping and elastic coupling, in addi-
tion to an adequate representation of geometric nonlinearitics. A review of the
existing structural modcls suitable for modeling compositc rotor blades were
presented by Fricdmann[26], Hodges[45] and Friedmann and Hodges[32].
As mentioned earlicr, rotor blades are typically modeled as bcams. In a beam
theory, the deformations of the cross-section, both in and out of the plane, are
assumed to be cither small or neglected. Therefore, an approach commonly
used in the structural models for composite rotor blade analysis is to determine
the cross scction warping functions , shear center location, and cross sectional
properties based on a lincar theory. The linear two-dimensional analysis for
the cross-section is decoupled from the nonlinear one-dimensional global anal-
ysis for the bcam and it needs to be done once for each cross section of a
nonuniform beam. The discussion of composite rotor blade structural model-
ing can, therefore, be divided into two categories: (1) Modeling approaches
which lead to the determination of the stiffness properties of arbitrary blade
cross sections. Anisotropic materials and the composite nature of the blade
are taken into account in this category. (2) Structural models which use an

one-dimensional beam kinematics suitable for composite rotor blade analysis.



A typical structural model of this category should include geometric nonline-
aritics, pretwist, transverse shcar dcformation and cross scction warping.
Many of the existing composite rotor blade models in category (1) were dis-
cussed in detail by Hodges[45].

Mansficld and Sobey[63] madc the first attemp to the study of this subject
by developing the stiffness propertics of a fiber composite tube subjected to
coupled bending, torsion and cxtension. Transverse shear and warping of the
cross scetion were not included in the model. This model was too primitive for
composite rotor blade acroclastic analysis. Rehfield[75] uscd a similar ap-
proach but included out-of-planc warping and transverse shear deformation.
This was a static thcory for a single cell, thin-walled, closed cross-section
composite, with arbitrary layup, undergoing small displacements. This rela-
tively simple thcory was subsequently correlated by Nixon[69] with exper-
imental data. Hodges, Nixon and Rchficld[47] also conducted a comparison
study of this modcl[75] with a NASTRAN finite element analysis for a beam
having a single closed cell.

Worndle[101] developed a linear, two-dimensional finite element model to
calculate the cross scctional warping functions of a compositc beam under
transverse and torsional shear. With these warping functions, the shear center
locations and the stiffness properties of the cross section could be calculated.
In this theory arbitrary cross scctional shapes could be modeled but the mate-
rial properties were restricted to‘monoclinic.

A more gencral model for calculating the shear center and the stiffness

propertics of an arbitrarily shaped composite cross section was developed by



Kosmatka[56]. Hc used a two-dimensional finite element model to obtain the
St. Venent solution of the cross-section warping functions of a tip loaded
composite cantilever bcam with an arbitrary cross section. Thc bcam was as-
sumed to be prismatic (axially uniform) and nonhomogcneous. The blade
consisted of generally anisotropic materials. Subsequently, this cross sectional
analysis was combincd with a modcrate deflection beam theory suitable for the
structural dynamic analysis of advanced propeller blades[56,57].

Giavotto, et al.[37] also formulated a two-dimensional finite element anal-
ysis for determining the cross scctional warping functions, shear center location
and stiffness properties. A special aspect of this formulation was that the re-
sulting cquations had both extremity solutions and central solutions. The
central solutions correspond to the warping displacements due to applied loads
without considering end cffects, while the extremity solutions correspond to the
warping displacements due to cnd cffects. Subsequently, this work was ex-
tended by Borri and Merlini[10] to include the so-called geometric section
stiffness associated with large displacement formulations.

Bauchau[3] dcvcloped a beam theory for anisotropic materials based on the
assumption that the cross section of the beam does not deform in its own
planc. The out-of-plane cross section warping was expressed in terms of the
so-called cigenwarpings. This theory is valid for thin-walled, closed, multi-
celled beams with transverscly isotropic material properties. Subsequently it
was extended by Bauchau, Coffenberry and Rehfield[5] to allow for general

orthotropic matcrial properties.



The studics on composite blade structural modcling, described above, were
bascd on a scparate two-dimensional analysis to determine the cross-sectional
warping functions and the stiffness propertics, and as mentioned carlier for
non-uniform beams, such a two-dimensional analysis has to be carried out
once for cach cross scction. An alternate approach, developed by Lee and
Kim[58] and Stemplc and Lec[87], uses a finite clement formulation which
can represent thin-walled beams with arbitrary cross sections, general spanwise
taper and planform distributions and allows arbitrary cross section warping.
This was accomplished by distributing warping nodes over the cross section
situated at the node of regular beam type finite element. Thus the treatment
of the cross scction warping is coupled with the treatment of the bcam bending,
torsion and cxtension. This formulation considers only the out-of-plane
warping and lincar problems. Subscquently it was partially extended by
Stemple and Lec[88] and used in the preliminary study of large static de-
flections of beams as well as the free vibration analysis of rotating composite
bcams. This approach is much more expensive than those whose cross scc-
tional analysis is decoupled from the nonlincar beam analysis, and therefore
it was never uscd in the acroclastic analysis of rotor blades.

The structural models for composite blade discussed so far cmphasize the
modcling approach associated with category (1), where the emphasis is on de-
termining the shear center, warping and cross-sectional properties of the com-
posite cross section. For category (2) structural modeling, where the emphasis
is thc onc-dimensional beam kinematics suitable for the analysis of composite

rotor bladcs, two types of theories are available depending on the level of ge-



ometric nonlincarity being retained in the onc-dimensional bcam kincmatics.
The first type is based on a moderate deflection theory while the second type
is capable of modcling large deflections. Moderate deflection theorics usually
usc an ordering scheme to limit the magnitude of blade displacements and ro-
tations, thus cnable the strain-displacement relations and the transformation
between the deformed and undeformed coordinates be cxpressed in terms of
blade displacement quantitics (u, v, W, ¢, and their derivatives with respect to
the axial coordinate, x) explicitly. While large deflection theories do not utilize
an ordering schemc to limit the magnitude of blade displaccments and ro-
tations. For such thcorics the only assumption used to ncglect higher order
terms is that the strains arc small.

For helicopter rotor blade acroclastic analysis, moderate dcflection theories
arc usually adequate provided that a consistent ordering scheme is uscd. Blade
models based on large deflection theories are mathematically more clegant and
more consistent than those using an ordering scheme; however, the incorpo-
ration of such models into general aeroelastic analyses involving forward flight
could be complicated. The computational requirements associated with mod-
erate deflection theorics may also be more modest than thosc associated with
large deflection theories.

The first acroclastic model for a composite rotor blade in hover was pre-
sented in a comprehensive study by Hong and Chopra[48]. In this model, the
blade was treated as a singlc-cell, laminated box beam composed of an arbi-
trary lay-up of composite plies. The strain-displacement relations for moderate

deflections were taken from Hodges and Dowell[40], which do not include the

10



cffect of transverse shear deformations. Each lamina of the laminate was as-
sumed to have orthotropic material propertics. The equations of motion were
obtained using Hamilton’s principle. A finite element model was used to
discretize the cquations of motion. Numerical results for the coupled flap-
lag-torsional behavior of hingeless rotor blades showed that the coupling ef-
fects duc to composite construction have a strong influence on blade stability
boundarics in hover. Subscquently this analysis was extended to the modcling
of composite bearingless rotor blades in hover[49]. The structural model pre-
sented in Ref. 48 was also used by Panda and Chopra[72] to study the
acroclastic stability and response of composite hingeless rotor blades in for-
ward flight. In a more recent study, Smith and Chopra[84] modificd the
structural modecl presented in Ref. 48 to include the effect of transverse shear
deformation, together with a more refined cross section analysis[85], to inves-
tigate the acroclastic response, stability and loads of composite rotor blades in
forward flight. The models used in Refs. 48, 72 and 84 were restricted to
single-cell, rectangular box beams.

A comprchensive analysis for the structural dynamic modcling of advanced
composite propeller blades, which, with some modifications, could be also
suitable for the gencral modeling of curved, pretwisted composite rotor blades,
was developed by Kosmatka[56,57]. In this model the blade cross sectional
geometry was general. The cross*sectional stiffness properties and shear center
location werc obtained from a linear two-dimensional finite element

model[56], which has been discussed bricfly earlier in this section.
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Bauchau and Hong[4,6,7] developed a scrics of large deflection composite
bcam modecls which were intended for rotor blade structural dynamic and
acroclastic analysis. Somc shortcomings in the first two modcls{4,6] were
noted by Hong in his dissertation[50]. The final version of their theory[7]
was suitable for modeling naturally curved and twisted bcams undergoing
large displacecments and rotations, while undergoing only small strains. The
kinematics associated with this theory were based on an cxtension of the com-
mon approach, using the definition of Green strains, to incorporate effects
such as small initial curvaturc, transverse shear deformations and out-of-plane
warpings. The basic assumptions in the kinematics were the restriction that
the cross-scction is rigid in its own plane combined with a revised small strain
assumption. In this revised small strain assumption, both axial and shear
strains werc ncglected when compared to unity, however no assumption was
madc on the relative magnitude between the axial and shear strains. There-
fore, the sccond order shear strain coupling terms in the axial strain expression
were retained under this revised small strain assumption. A frequently used
small strain assumption, which includes an additional assumption that the ax-
ial and shearing strains arc of the same order of magnitude, was often used
successfully in becam modcls with isotropic or slightly anisotropic materials.
However, Bauchau and Hong[7] showed that it might be inadequate for
bcams having large amounts of anisotropy, by comparing analytical and ex-
perimental results obtained for a thin-walled kevlar beam. This model was

uscd for free vibration studics[50], as well as studies on beams undergoing
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large static deflections. However, an acroclastic analysis of rotor blades based
on this model is not available to date.

Minguet and Dugundji[66,67] also developed a large deflection composite
blade model for static[66] and frce vibration[67] analyses. Large deflections
were accounted for by using the Euler angles to describe the transformation
between a global and local coordinate system after deformation. However,
transverse shear deformation and cross section warping were not incorporated
in this model. Thus this model is more suitable for the study of flat composite
strips than actual rotor blades.

Hodges[46] presented a general beam theory based on a nonlincar intrinsic
formulation for the dynamics of initially curved and twisted beams in a moving
frame. This bcam model is valid for both isotropic and composite bcams. The
nonlinear beam kinematics was based on a theory developed by Danielson and
Hodges[17,18].  The final set of equations of motion werc derived using a
mixed variational principle, which provided the basis for finite element for-
mulation. Subsequently Fulton and Hodges[22] developed a finite clement

based stability analysis for a hingeless composite isolated rotor in hover.

1.2.3  Structural Modeling of Swept-tip Blades

Only a limited number of analytical studies have addressed the acroelastic
modeling of rotor blades with swept tips. An analytical study was conducted
by Tarzanin and Vlaminck[90] to investigate the effect of tip sweep on the

hub loads of an articulated rotor system. In this model, tip sweep was simu-
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lated approximatcly by manipulating the relative positions of thc shear center,
acrodynamic center and mass center of the cross sections of a straight blade.
The mathematical model consisted of coupled flap-torsion and uncoupled lag
equations of motion. The numerical results obtained led them to conclude that
tip sweep influences both blade vibrations and stability.

Celi and Fricdmann[12] developed a comprchensive and consistent model
which was capable of simulating the aeroclastic behavior of a hingeless rotor
blade with a swept tip. The analysis was based on the equations of motion
presented in Ref. [81]. The swept tip was modeled by dcvcloping the struc-
tural, inertia and acrodynamic opecrators for a special beam finite clement re-
prescnting the tip, while the straight portion of the blade was modecled using a
number of Galerkin type finite elements{27,89]. This was the first detailed
and systematic study of the cffect of tip sweep on blade stability in both hover
and forward flight. The most important conclusions obtained in Ref. 12 are
bricfly described next. Tip sweep has a powerful influence on the dynamic
behavior of hingeless rotor blades. However, its effect depends on a number
of blade design paramcters, such as precone and the combination of blade
fundamental frequencies. The aeroelastic instabilities induced by tip sweep are
associated with frequency coalescence. Such instabilities are strong, and can-
not be climinated by the addition of small amounts of structural damping.
When frequency coalescence does not occur, tip sweep is usually stabilizing.
Despite its comprehensive nature, the model used in Ref. 12 had a number of
limitations because it approximated the swept tip portion of the blade as

axially rigid element, and it also employed a linear transformation at the
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junction where the swept-tip clement was combined with the straight portion
of the blade. It was latter shown that such a transformation could be inaccu-
ratc for large sweep angles[73]. Furthermore, it should be noted that the
studics presented in Refs. 90 and 12 were restricted in the sense that they could
only represent tip sweep, but not anhedral (sce Fig.‘ 2.3).

Benquet and Chopra [8] developed an aceroclastic analysis to calculate the
response and loads of an advanced tip hingeless blade in forward flight using
finite element method. This model included both tip sweep and anhedral,
however it was still based on a lincar transformation for combining the swept
tip with the straight portion of the blade. Subscquently, Kim and
Chopra[55] extended the formulation given in Ref. 8 to include nonlinear
transformation in the assembly between the swept tip and the straight portion
of the blade, using the transformation and constraint relations developed by
Panda[73]. Bir and Chopra[9] developed an aeroelastic formulation for ad-
vanced geometry blades with variable sweep, anhedral, pretwist and planform.
The blade was modeled as a series of arbitrarily oriented elastic segments with
cach segment divided into finite elements. Fuselage dynamic interaction with
the blades was included in the formulation.

All of the studies on swept tip blades mentioned above were restricted to

isotropic blades.
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1.2.4 Structural Optimization for Vibration Reduction

A fairly recent survey describing rescarch on helicopter vibration reduction
using structural optimization, with acroclastic and multidisciplinary con-
straints, was presented by Fricdmann[28]. It was shown[28] that the inte-
grated multidisciplinary optimization of rotorcraft offers the potential for
substantial improvements, particularly in vibration levels, which can be
achicved by carcful preliminary design and analysis without requiring addi-
tional hardware such as rotor vibration absorbers or isolation systems.

To avoid duplicating the review presented in Ref. 28, only a few studies will
be mentioned in this section. The majority of the structural optimization
studics on hclicopter rotor blades[28] have been restricted to straight isotropic
blades. Fricdmann and Shanthakumaran[29] applied mathematical pro-
gramming mcthods and approximation concepts[80] to vibration reduction of
helicopter rotor blades in forward flight. The objective function consisted of
the oscillatory vertical hub shears or the hub rolling moments at an advance
ratio g = 0.3 . The bchavior constraints included frequency placements of the
blade and aeroclastic stability constraints in hover. Cross sectional dimensions
and nonstructural tuning masses, located in the outboard portion of the blade,
were used as design variables. Numerical results for typical soft-in-plane
hingeless rotor configurations indicated that a 15%-40% reduction in vibration
levels, as well as a 20% weight reduction were obtained.

Lim and Chopra[61,62] carried out a comprehénsive study of vibration re-
duction in helicopter rotor blades with aeroelastic constraints. An important

contribution made in Refs. 61 and 62 consisted of using a direct analytical
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approach for the calculation of the derivatives of the hub loads[397] and blade
stability[60], with respect to the design variables. These sensitivity derivatives
were obtained at a fraction of the computational cost associated with the more
conventional finite difference method, such as that used in Ref. 29. However
this approach is applicable only when explicit analvtical expressions are avail-
able, as a function of the design variables, in the calculation of the sensitivity
derivatives.

Davis and Weller[19] dcveloped a modal-based rotor blade optimization
analysis which was applicd to various rotor dynamics problems, such as blade
natural frequency placement, minimization of hub shears and minimization of
modal vibration indices. This modal-based analysis was an automated analy-
sis capable of optimizing blade modal characteristics through tailoring of
structural propertics. They concluded that the modal-based optimization
analysis can produce blade design with significantly lower vibration levels.
Frequency placement alone was shown to be inadequate to achicve minimum
vibration level. However minimization of modal vibration indices and modal
hub shcars lcad to substantially lower vibratory hub loads, with the modal vi-
bration indices minimization becing the most effective criteria for rotor vi-
bration reduction. Subscquently, these results were verified by fairly extensive
wind-tunnel tests{99,20]. In these tests the bascline rotor vibration levels were
compared with those measured for the optimum rotor, and rcasonably good
correlation between theory and experiments was obtained. It should be also

mentioned that aeroclastic stability constraints were not considered in Ref. 19.



Young and Tarzanin[102] conducted a combined analytical-cxpcrimental
study on the application of structural optimization to rotor design. In this
study two diffcrent rotors: a reference rotor and a low vibration rotor; having
identical planform, twist and airfoil, were tested in the wind tunnel. The ref-
erence rotor was designed using a conventional approach; while the low vi-
bration rotor was decsigned using an analytical structural optimization
proccdure, in which the objective function consisted of the fixed system hub
loads. The wind tunnel test results showed substantial reductions in the 4/rev
vertical hub shear and overturning moment for the low vibration rotor at both
low and high advance ratios. Thus, Ref. 102 provides a validation of the
structural optimization procedure for the design of low vibration rotors in for-
ward flight.

Adclman and Mantay[l] edited a comprehensive report on the current
state of intcgrated multidisciplinary optimization of rotorcraft, which included
an intelligent plan for future development towards the complete integration of
various disciplines. It is evident from this document that hclicopter vibration
reduction is one of the areas where an integrated multidisciplinary design ap-
proach offers excellent potential for performance gains.

The improved modeling capability available for composite rotor blade
aeroclastic response and stability analysis produced a few structural optimiza-
tion studics on straight composite rotor blades[35,36]. In Ref. 35, the design
variables were the ply angles of the laminated walls of the box beam, and the
objcctive was the minimization of the 4/rev hub loads; both hub shears and

moments. Reference 36 was an extension of the study performed in Ref. 35
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by allowing the ply angles to vary from clement to element in the spanwisc
direction, and performing a multi-objective optimization to minimize the 4/rev
hub loads and the blade root moment simultancously.

Only a limited number of structural optimization studies were conducted
on swept-tip blades; with acroclastic constraints[14,34]. While Refercnces 14
and 34 arc both restricted to isotropic blades, they indicated that tip sweep can

be uscd cffectively as an important design variable for vibration reduction.

1.3 OBJECTIVES OF THE RESEARCH

The present study has a number of important objectives which are listed

below:

1. Development of an analysis capable of modeling the aeroelastic behav-
ior of composite hclicopter rotor blades with swept tips in hover and
forward flight. The important features of this analysis include: (a)
computational cfficicncy so that the analysis is suitable for the repetitive
calculations required for structural optimization; (b) fully coupled
trim/aeroelastic response analysis capability, since this feature was
found to be critical for the accurate modeling of the dynamic behavior
of rotor blades with swept tips; and (c) ability to represent arbitrary
multi-cell blade cross-sections.

2. Conduct detailed studies on the aeroelastic behavior of composite rotor

blades with straight and swept tips to determine the combined effect of
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sweep, anhedral and composite ply orientation on bladc response and
acroclastic stability in hover and in forward flight.

Conduct studics illustrating the cffects of sweep, anhedral and ply ori-
cntation on the hub shears and moments of composite rotor blades in
forward flight.

Combine the ncw acroclastic analysis capability for swept tip composite
blades with a structural optimization package, such as DOT[106].
Conduct a few basic structural optimization studies on two-cell, com-
posite blade configurations to illustrate the potential bencfits of using
ply oricntation, tip swecep and tip anhedral as design variables for re-

ducing vibration levels in forward flight.
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Chapter 11
MODEL DESCRIPTION AND COORDINATE SYSTEMS

In this chapter, the assumptions used in the development of the acroclastic

analysis of a composite helicopter rotor blade with a swept tip arc summarized.

The ordering scheme used in the formulation of the moderate deflection thecory

is described next.  Finally, the various coordinate systems and related coordi-

nate transformations, used in the derivation of the equations of motion of the

blade, are defined.

2.1

BASIC ASSUMPTIONS

The hingeless blade is cantilevered at the hub, with a root offset ¢, from
the axis of rotation (sce Fig. 2.2).

The blade has a precone angle B, (sce Fig. 2.2) and it has a built-in
pretwist distribution 1, about the elastic axis (line of shear centers) of
the blade.

The blade has no sweep, droop or torque offset.

The blade consists of a straight portion and a swept tip whose oricn-
tation relative to the straight portion is described by a sweep angle (Ay)
and an anhedral angle (A,) (sce Fig. 2.3).

The blade is modeled by beam type finite elements along the elastic axis

of the blade.
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10.

12.

13.

A singlc finite element is used to model the swept tip.

The blade cross section can have arbitrary shape with distinct shear
center, acrodynamic center, tension center and center of mass.

The stiffness and mass properties of the blade, and its chord and pre-
twist, arc allowed to vary along the span of the blade.

The blade feathering axis coincides with the line of shear centers of the
straight portion of the blade, which is épproximated by a straight line.
Note that the blade stiffness distribution for a typical helicopter, such
as the MBB BO-105[86], usually consists of a stiff, nonuniform inboard
portion (approximately 25% of the blade length) in which large vari-
ations in stiffness can occur, and a flexible outboard portion (approxi-
mately 75% of the blade length) where the blade properties are
relatively uniform. The elastic deformations of the blade occur prima-
rily in the outboard portion; thus the line of shear centers associated
with this blade scgment is to a large extent representative of the behav-
ior of the elastic axis of the whole blade.

The blade is built of generally orthotropic materials, and it is
anisotropic.

The blade has completely coupled flap, lead-lag, torsional and axial dy-
namics.

The effects of transverse shear deformations and out-of-plane warping
are included.

The blade undergoes moderate deflections, which imply small strains

and moderate rotations.
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4. Two-dimensional quasi-stcady acrodynamics, based on Greenberg's
theory, is uscd to obtain the distributed acrodynamic loads; this simple
unstcady theory is justifiable because the principal objectives emphasize
the structural modeling of the blade and its optimization for vibration
reduction.

I5. The induced inflow is assumed to be uniform and steady.

16. Stall and compressibility effects arc neglected.

7. Reverse flow effects are included by setting the lift and moment equal
to zero and by changing the sign of the drag force insidc the reverse flow
region (scc Fig. 5.3).

18. The rotor shaft is assumed to be rigid and the speed of rotation () of
the rotor is constant.

19. The helicopter is in trimmed, steady and straight flight.

The assumptions listed above arc used in various stages of the formulation
of the acroelastic model. Additional assumptions needed for the structural
modeling of the blade, such as the kinematical assumptions and the assumtions
used in the development of the constitutive relations, are discussed in Chapter

3.
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2.2 ORDERING SCHEME

An ordering scheme is defined and used to identify and declete higher order
nonlincar terms, generated during the derivation of the equations of motion for
a bcam clement undergoing modcrate deflections, in a consistent manner. This
ordering scheme is based on the assumption that the slopes of the deformed
clastic blade are modcrate, and of order ¢ (where ¢ is assumed to have a mag-
nitude 0.10 < ¢ £ 0.20 ). Orders of magnitude are then assigned to the various
non-dimensional physical paramcters governing the aeroclastic problem in
tcrms of &. In the derivation of the governing equations, it is assumed that

terms of order £* are neglected with respect to terms of order 1, i.e.,

O(1) + O(e%) ~ O(1)

The orders of magnitude for various non-dimensional parameters used in this

study arc listed bclow:

¢ _ 10
Wy Qo
A, A,, sinA, cosA, sinA, cosA,

siny, cosy,

o(1) : }

o) 6,

N n { v w , Y, Y. ¢
O(h) * ] ? l ? l ? ] ? v'x’ “ X? ¢, al, l b4 l ? ] 1] pp’
0., 6, 6,
u - - - Y mQ
0(82) : —i—9 u_xa Exxs }’xm Yx;, ‘1_2_9 EA
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In genceral, it is assumed that rotation terms such as vV, W, and ¢ arc of
order ¢, while strain terms such as U,, ¥xy and ¥,, are of order ¢2. The warping
amplitude « is assumed to have the same order of magnitude as ¢ .. This
scheme is consistent with a moderate dcflection theory (small strains and
moderate rotations). Furthermore, it is assumed that the cocfficients of the
reduced material stiffness matrices, Q,; (i,j = 1,5, 6), arc of the same order
of magnitude. It is important to note that, ordering schemes are not unique
and arc bascd on common sense and experience with actual blade configura-
tions. Therefore, the application of the ordering scheme requires both care and

a certain degree of flexibility.

2.3 COORDINATE SYSTEMS

Scveral coordinate systems are required to fully describe the geometry and
deformation of the blade. Each coordinate system is symbolically represcented
by a triad of orthonormal unit vectors. The first three systems, namcly, the
nonrotating, hub-fixed system (/i\m,}m, ﬁn,) , the rotating, hub-fixed system
(/i\,,/j\,, lA(,) ,» and the preconed, pitched, blade-fixed system (Aib,}b, Qb) , respec-
tively, arc used to position and oricnt the blade relative to the hub through
rigid-body motions, as shown in Figs. 2.1 and 2.2. The next two systcms,
(ex, éy, 32) and (éx, eq, f:c) , respectively, are used to position and orient cach
becam finite element relative to the (?b,}b, lA<b) system in the undeformed config-

uration of the blade, as shown in Figs. 2.3 and 2.4. A final system, (e, 6,;, ?:g)

, is used to represent the orientation of the local blade gecometry after defor-
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mation. An additional system, the preconed, blade-fixed system (iy, jp, K;) , is

used as cxplained in Subsection 2.3.7.

2.3.1 Nonrotating, Hub-fixed Coordinate System
A A A
The (iyrs jur Kne) System, shown in Fig. 2.1, is an inertial rcference frame and
A
has its origin at the hub center. The vector i,, points toward the helicopter tail;

A

A
i poiNts to starboard; and k,, coincides with the rotation vector of the rotor.
A

A
i, and j,, are in the plane of rotation. Hub shears and moments are defined

in this coordinatc system.

2.3.2 Rotating, Hub-fixed Coordinate System
The (Ai,,’j\,, I’E,) system, shown in Fig. 2.1, also has its origin at the hub center
but rotates with a constant angular velocity QIA(, . The vector ’i\, coincides with

A A
the azimuth position of the blade, while k, is coincident with the vector k,, ; i;

A
and j, are also in the plane of rotation of the rotor.

2.3.3 Preconed, Pitched, Blade-fixed Coordinate System

The (’i\b, 3,,, lA(b) system, shown in Fig. 2.2, rotates with the blade and has its
origin at the blade root, offsct from the hub center by e,,i\, . The vector ?b co-
incides with the pitch axis, which is also the undeformed clastic axis of the
straight portion of the blade. The ('i‘b, ’j\b, ﬁb) system is oriented by rotating the

(?,, /j,, IIE,) system about —,j, axis by the precone angle 8, and subsequently in-
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troducing a sccond rotation about the rotated /i\, axis by the gecometric pitch
angle Gp . In the finite clement model of the blade, the (Aib,’j\b, ﬁb) system is the

global coordinate system.

2.3.4 Undcformed Element Coordinate System

The (C,, ¢, ¢,) system, shown in Fig. 2.3, has its origin at the inboard node
of the finitc clement. The vector éx, is aligned with the beam clement elastic
axis; while the vectors éy and ¢, arc defincd in the cross scction of the beam.
For the straight portion of the blade, the (¢, €,, €,) system has the same orien-
tation as the (/fb, }b, ﬁb) system. For the swept-tip element, the (?:x, 3)., f\:z) system
is oricnted by rotating the (/i\b, /j\b, 1A<b) system about — IA(b by the sweep angle A,
, and then about — }b by the anhedral angle A, . The (e, 3)., ¢,) system is also
the local coordinate system for the blade finite element model. The displace-
ment components and the applicd loads of the beam finite element are defined

in this coordinatc system.

2.3.5 Undeformed Curvilinear Coordinate System

In the (¢, ¢,, &) system, the vectors €, and ¢, are defined parallel to the
modulus weighted principa! axes of the cross section; and the pretwist angle
p(x) is defined as the change in the orientation of 3,,, 3; with respect to éy, ?:Z
respectively, at any location along the beam element, as shown in Fig. 2.4.
Effects of blade pretwist are properly accounted for by deriving the beam ele-

ment strain-displacement relations in the ((A:x, fA:,,, éc) system, which rotates with
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the beam pretwist.  The strain components, the material propertics, and the

cross scction warping function arc all derived in this coordinate system.

2.3.6 Deformed Curvilinear Coordinate System

The (¢}, ¢, ¢;) system, which will be discussed in more detail in chapter 3,
represents the orientation of the local blade geometry after deformation. The
orientation of the (&}, ¢, &) system is obtained by rotating the (¢,, ¢,, ¢;) system
through three Euler angles in the order of 6;, 6, and 6, about 3,;, rotated ?:,, and
rotated ¢,, respectively. This sequence was chosen following the work of pre-

vious authors[40,76] but other sequences are also possible. The vector el is

chosen to be tangent to the local deformed elastic axis.

2.3.7 Preconed, Blade-fixed Coordinate System

The (Aip, /ip, ﬁp) system is identical to the preconed, pitched, bladc-fixed sys-
tem (Aib,}b, lA(b) when the pitch angle 6, is equal to zero. The (?P, ij, ﬁp) system
is oriented by rotating the (’i\b,]}b, l'\cb) system about — Iib by the pitch angle 6, ,
thereby canceling the pitch rotation inherent in the definition of the (/i\b, 3,,, IA(.,)
system. Expressing the blade response and blade root loads in this coordinate
system is convenient when comparing the results, for these quantities, with

similar results available in the literature.
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2.4 COORDINATE TRANSFORMATIONS
The coordinate transformations between the various coordinate systcms
described in the previous scction, which are needed for the formulation of the

cquations of motion, are defined in this section.

2.4.1 Rotating to Nonrotating Transformation
The transformation between the rotating, hub-fixed coordinate system and

the nonrotating, hub-fixed coordinate system is defined as:

N A
i i
o =[Tm1< 5, (2.1)
A A
Ky Knr
and thce transformation matrix [ T,,] is given by
cosy siny @
[Tl =] —siny cosy 0 (2.2)
0 0 1

where, ¥ is the blade azimuth, ¢ = Qt.
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2.4.2 Blade-fixed to Hub-fixed Transformation
The transformation between the preconed, pitched, blade-fixed coordinate

system and the rotating, hub-fixed coordinate system is defined as:

A A

ib ir

b e=[TelS 5 (2.3)
A A

kp Ky

and the transformation matrix [ T,, ] is given by

1 0 0 cosB, o sinp
. p P
[ Tbr] — 0 Ccos Bp sin Op 0 I 0 (2.4)
0 —sin Op cos OP — sin ﬂp 0 cos Bp

where, B, is the blade precone angle, and Bp is the blade pitch angle due to

pitch control setting, expressed by:
6, = 0 + 0y cosy + Oy siny (2.5)

in which 8, is the collective pitch, 8, and 8, are the cyclic cosinc pitch and

cyclic sine pitch, respectively.

2.4.3 Element to Blade Transformation
The transformation between the undeformed element coordinate system

and the preconed, pitched, blade-fixed coordinate system is defined as:

A A
€x Ip
A A
A A
e, Ky,
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For the straight portion of the blade

(T = [

—_ o

] (2.7a)

oo —
O —0

For the swept-tip element

[ cos Ay —sinAg ¢ cosA, 0 sinA,
[Teb] =] sinA;  cosAg 0 0 1 0
0 0 1 —sinA, (Q cos A,

(2.7b)
[ cos Agcos A,  —sin A, €OS Agsin Ay

= sin Agcos A, cos A sin Agsin A,

—sin A, 0 cos A,

where, A is the blade tip sweep angle, positive for backward sweep, and A, is

the blade tip anhedral angle, positive upward.

2.4.4  Undcformed Curvilincar to Undeformed Element Transformation
The transformation between the undeformed curvilinear coordinate system

and the undeformed element coordinate system is defined as:

A N
€y ey
A
ey p=[Te]1 éy (2.8)
A A
e{ ez
and the transformation matrix [ T, ] is given by
l 0 0
[T.1=]0 cosf sinf (2.9)

0 —sinf cosp
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where, B is the blade local pretwist angle which varics along the blade clastic

axis. Differentiating Eq. (2.8) with respect to x gives

>

Cx x OA
A _ Tn€
Chx [ = OAC (2.10)
Sc.x — TSy
where
19 = ﬂ'x (2.11)

2.4.5 Decformed to Undeformed Curvilinear Transformation
The transformation between the deformed curvilinear coordinate system

and the undeformed curvilinear coordinate system is defincd as:

A, A
ex eX
A, A
Sy p=[Tygc 1§ € (2.12)
A, A
€ ec
and the transformation matrix [ T, ] is given by
[Tgc 1 =
| 0 0 cosd, o —siné, cosb; sinb; ¢
0 cosby sinby 0 1 0 —sinf; cosfy 0 | (213)
0 —sinf, cosf, || sinb, 0 cosé, 0 0o |

where, 6., 0, , and 0, are Euler angles about éc , rotated 'é,,, and rotated éx,

respectively.
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2.4.6 Deformed Curvilinear to Undeformed Element Transformation
The transformation between the deformed curvilinear coordinate system

and the undcformed clement coordinate system is defined as:

0>
~ M~
o> 0>

=[TgelX & (2.14)

(¢}
Q>:>

o>

where the transformation matrix [ Ty ] is given by
[Tde] =[Tdc][ch] (2.15)

This transformation is discussed in greater detail in Chapter 4 and Appendix

A.

2.4.7  Preconcd, Blade-fixed to Preconed, Pitched, Blade-fixed Transformation
The transformation betwcen the preconed, blade-fixed coordinate system
and the preconed, pitched, blade-fixed coordinate system, described in Sub-

section 2.3.7, is defined as:

A A

Ip Iy

A A

b ¢=L[Telg ip (2.16)
A A

ky ks

where the transformation matrix [ Ty ] is given by
1 0 0

[Typl=|0 cosf, —sinf, (2.17)
0 sin Gp coS 0p
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Chapter 111
STRUCTURAL MODELING OF THE COMPOSITE ROTOR BLADE

The derivation of the structural operator for the composite rotor blade
model is presented in this chapter. Important features for a compositc beam,
such as transverse shcar deformations and out-of-planc warping, arc included.
The nonlincar kincmatics of deformation is based on the mechanics of curved
rods (Ref. 97 and Ref. 100, Chap. 8), and thc theory of clasticity in curvilincar
coordinates (Ref. 98, Chap. 4). The strain components are first derived in a
curvilincar coordinate system so that the cffects of pretwist arc properly ac-
counted for. These strain components are then transformed to a local
cartesian coordinate system. The stress-strain relations arc assumed to be de-
fined in this local cartesian coordinate system.

The kinematical assumptions used in the derivation of the structural opcr-
ator arc listed below:

1. The deformations of the cross section in its own planc arc neglected.

2. The strain components are small compared to unity such that both axial
and shear strain components are neglected with respect to unity. How-
cver, the relative magnitude between the axial and shear strains is not
assumed due to material anisotropy, e.g., squares of shear strains can-

not be neglected with respect to axial strains under this assumption[7].

3. Higher order warping terms are neglected.
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The dcrivation of the strain components based on thesc assumptions is valid
for small strains and large deflections. However, quantities such as displace-
ment components ( u, v, w) and clastic twist angle (¢) do not appcar cxplicitly
in the resulting expressions of the strain components.  Subscquently, explicit
expressions for the strain-displacement relationship are obtained by consider-
ing the deformation procedure during the finite rotation from the undcformed
to the deformed configuration and using an ordering schemc to systcmatically
identify and neglect higher order nonlincar terms which arc generated during
the derivation[40,76]. Thus, the final strain-displacement relations are valid

for small strains and modcrate deflections.

3.1 KINEMATICS OF DEFORMATION
The position vector of a point P on the undeformed becam with respect to

the hub center is:
A A A A A
rx,n,{) = eji, + heip, + xe, + ne, + (e 3.1

where ¢, is the blade root offset from the hub center, and h, is the offset of the
in-board node of the beam finite element from the blade root. The physical
interpretation of this position vector is facilitated by considering the geometry
described by the combinationof Figs. 2.2-2.4. Equation (3.1) can be used to
represent the undeformed position vector both for a point on the straight por-

tion as well as a point on the swept tip portion. For a point on the swept tip
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clement, h, cquals the length of the straight portion of the blade. The corre-

sponding undcformed based vectors at point P are

8y = Tx = /c\x - {roé\n + ntole\g (3.2a)
g, =T, =6 (3.2b)
g =T = QC (3.2c)

where the derivatives of the orthonormal triad (€,, €,, € ) are rclated to the

initial twist, 4, of thc undeformed bcam by:

¢ ¢

e 0o 0 O X

e,x =0 0 To ey (3.3)
A O - TO 0 N

€ x €

which can bc obtained from Eq. (2.10). Note that if point P is not on the
clastic axis, and thc initial twist 7, is nonzero, then the base vector g, is ncither

. . A A «
a unit vector nor orthogonal to the cross-sectional planc of €, and ¢, as is
cvident from Eq. (3.2a).

Since the in-planc deformations of the beam cross-section are neglected, the

position vector of the point P in the deformed configuration can be written as:
R(x,7,{) = Rox) + nE, + (E; + a(x)¥(1,0)e; (3.4)

where

Ry(x) = R(x,0,0) (3.5)
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is the corresponding position vector of a point on the deformed clastic axis; and

E](x): RJ(X,0,0), 1= X, rl?C (36)

are the base vectors of a point on the deformed elastic axis. In Eq. (3.4), the
first three terms represent translations and rotations of the cross-scction, while
the last term is the out-of-plane warping of the cross-section: «(x) is the un-
known amplitude of warping; W(y, {) is the out-of-planc warping function of

the cross-section, with

¥(0,0) = ‘{"n(O, 0) = \{I,C(O’ 0)=0 (3.7)

duc to the definitions of R, and E,, Eqs. (3.5) and (3.6), respectively.

The orthonormal triad of the deformed curvilinear coordinate system,
(f:;, 6,;, eg ), can be viewed as a rigidly translated and rotated version of the
orthonormal triad of the undeformed curvilincar coordinate system,
(3,‘, ?:,,, 64 ) . Without loss of generality, the unit vector ¢, is assumed to be in
the direction of E, , i.c., tangent to the deformed elastic axis of the bcam; while
the oricntations of 6,; and 32 arc ncarly that of E, and E, but differ on ac-

count of the strains[100]. The deformed base vectors of the clastic axis are

cxpressed in terms of G,’(,?:,; and ég by the following definition [Ref. 100,

p.356] :
E, = (1 +&,)c, (3.8a)
E, = 2&,¢; + (1 + Egy) O + By € (3.8b)
Ef = 2848, + g0, + (1 + &) ¢ (3.8¢)
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With the assumption that in-plane dcformations of the beam cross-scction

arc ncglected, i.c.,

E,m = ECC = E"C =0 (39)

the base vectors of the deformed clastic axis become:

E, = (1 +&,)e, (3.10a)

E, = 25465 + € = Txyx + & (3.10b)

E; = 25,0 €; + € = Ty €5 + ¢ (3.10c)

where it will be shown latter that g, ¥,, and y,; arc thc axial and the

transverse shear strains, respectively, at the elastic axis. Equations (3.10) im-
ply that cross sections which are normal to the elastic axis before deformation
(cg., e”-e< plane ) will no longer be normal to the elastic axis after deformation
(e.g., E,-E; plane is not normal to E, ) due to the presencc of transverse shear

strains. The deformed base vectors at point P are:

Gy=Ry=E +nE , + {E  + a¥e; + a¥ e,

[(1 + Exg) + N(2Ey 5 — Ky) + U2Eyr 5 — Kp) + 0 HT &

(3.11a)
+ [2yEy + U2MyEx — T) + 2¥i, ] €,
+ (2B, + T) + 2igEyy + a¥iy] e
Al
G,, = R'" = E,, + a‘}“,’ €y
(3.11b)

= (% +a¥ e + €
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(3.11¢)

’

where the derivatives of the orthonormal triad (3;, 3,,, ég ) are rclated to the

curvatures, k, , k., and twist, 7, of the deformed beam by:

y ;

/\,,x _OK Kn K /\),(

G .x = n 0 7 €y (3.12)
A, —Kr —1 0 A,

C x €

3.2 STRAIN COMPONENTS

The set of coordinates (x, 7, () are, in general, non-orthogonal curvilinear
coordinates since the base vector g, , expressed in Eq. (3.2a) is ncither a unit
vector nor orthogonal to the base vectors g, and g; for an arbitrary point on
the beam with nonzero initial twist 7, . In the derivation that follows, the no-

tation (X, X,, X;) will be used in place of (x, 7, {) whenever convenient.

3.2.1 Strain Components in Curvilinear Coordinates

The components of the strain tensor in the curvilinear coordinates are de-

fined by (Ref. 97 and Ref. 98, p. 113):
fii:“;‘(Gi'Gj)—(gi'g,-), Li=x,n¢ (3.13)

Combining Eqgs. (3.2) and (3.11) with Eq. (3.13) gives:
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fax = Exx + n(ZEm,x— Kn) + C(25,g,x-‘l<{) + a’x‘l‘

1,2 2,,..2 2 (3.142)

+ ?(71 + {9) (" — 1)
oy = fyx = xg + 38 5 = Uz = 70)] (3.14b)
fxc = fcx = EXC + —%'[G\P'( + ﬂ(T - 1.'0)] (3]40)
£y = 0 (3.14d)
fr =~ 0 (3.14¢)
f'IC = f(’, ~0 (3.14f)

In the derivation of Egs. (3.14), both axial and shear strain components were
ncglected with respect to unity, but no assumption was made regarding the
relative magnitude of axial and shear strains[7]. Higher order terms contain-

ing warping were also ncglected in the derivation presented in this section.

3.2.2 Strain Components in Local Cartesian Coordinates

Define a system of local cartesian coordinates (y,, ¥, ¥3) at point P with its
unit vectors parallel to the orthonormal triad (3,, 3,,, 3;) of the cross section,
respectively. The stress-strain relations of the beam are assumed to be given
in the local cartesian coordinate system. To find the transformation between

the curvilinear coordinates (X;,X,,X;) and the local cartesian coordinates

(Y1, Y2, ¥3), consider
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3 ar_ 9%, 0%;
Yj i 0Y; Yj
A 0x;
B¢ = (gk'gi)a—y. (3.16)

]

. . 0X; . .
Thercfore, the transformation relation, a—' , can be cxpressed in matrix form

Yi
as:
ox; 1 A
—— | = [&-8l1 [ek-¢]
[ayj:l k &1 k 4
1 Cfoz ) —'1:02 | —lrg 7%
= {tg 1+¢ 9 — N7 0 1 0 (3.17)
| — N7 -UCT(Z) l+'lzf(2) 0 o0 I
[ 1 0 0
= {tp 1 0
_"'ITo 0 1
where

1 +(r]2+52)t(2) — {1y M7
[gx-g]= — {1 1 0 (3.18)
L)) 0 |

The strain tensor defined in the local cartesian coordinates, &; » is obtained

from (Ref. 97 and Ref. 98, p. 118):
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T AR R dr  Or

3 3 -
1 R _OR _ ar _ ar \ %% X
2 Z Z( o, 0x x,  0X > ady, Oyj (3.19)

k=11l=1
i 3 Oxy 0
= Ao av. KW
k=1 I=1 4 cy’

Substituting Eq. (3.17) into Eq. (3.19), the transformation between the strain
componcnts in the local cartesian coordinate system, ¢&; , and the strain com-

ponents in the curvilincar coordinate system, f; , can be written as:

ey = N + erofm - 3'IT0fx§ (3.20a)
Exy = Epx = fxy (3.20b)
e = gx = fy (3.20¢)
epy =0 (3.20d)
rr =0 (3.20¢)
ey = &gy =0 (3.20)

Combining Egs. (3.14) with Egs. (3.20), the strain componcnts in the local

cartesian coordinates become:
Exx = Exx — MKy — {kp + o W+ aTo(C‘V,r,—ﬂ‘*’,g)

+ 20+ =107 + 1Fryx— ToP) (3.21a)

+ C(?x;'x + TO-};X]')
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Yag = Vxp + 0¥, =1 — 1) (3.21b)
Y = ¥ + ¥+t — 1) (3.21¢c)
ey = &g =Ty =0 (3.21d-0)
where

Vo = 28 0 Yy = 28¢ . Yyr = 2ey (3.22)
Top = 280 o+ T = 28g¢ Ty = 28y (3.23)

The strain components in Eqs. (3.21a-c) are valid for small strains and
large deflections since the kinematical assumptions used in the derivation of
Eqs. (3.21) arc only on strains and warping, and not on displaccments and
rotations. These strain components are expressed in terms of scven unknown
functions of the axial coordinate x : E,,, Yans Vx> Kp» K¢, T and a. The first

three arc the axial and transverse shear strains, respectively, at the elastic axis,

since

Exx (X, 0,0) = &, (3.24a)
Vi (%,0,0) = Ty, (3.24b)
¥ (%,0,0) = ¥y (3.24c)

and the next three are the curvatures and twist, respectively, of the deformed
bcam; the last one, a, is the ampfitude of warping.
Equations (3.21) can be compared directly with the strain components de-

rived by Hodges[43] and Bauchau and Hong[7]. The beam theories derived
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by Hodges[43] and by Bauchau and Hong[7] are valid for small strains and
large deflections, however the former is primarily for isotropic beams since
transverse shears are not included, while the latter is a compositec bcam theory.
When the warping amplitude, «, is replaced by (t — 14) , Eqs. (3.21) agree with
Egs. (5) of Hodges[43] cxcept that Egs. (3.21) have additional terms duc to
transverse shear. If bending related warpings ( W,, W5 in Ref. 7, Egs. (29-31)
) arc cxcluded, then Egs. (3.21) agree with Egs. (29-31) of Bauchau and
Hong[7] except the shear strain terms in the axial strain expression. This is
duc to a slight diffecrence in the orientation of the orthonormal triad (3;, 3,’,, 33)
in the deformed configuration. In this development, €, is in the direction of
E,, i.c., tangent to the deformed clastic axis, while é,’, and 32 arc not in the di-
rections of E, and E, , respcctively, because of the transverse shear strains.
On the other hand, Bauchau and Hong chose to align 8,; and GE with E, and
E., respectively, duc to the assumption that the cross section does not deform
in its own plane, while €, is not in the direction of E, due to transverse shear
strains. When transversc shear strains of the elastic axis arc set to zero, then
both Eq. (3.21a) and Bauchau and Hong’s Eq. (29) reducc to Eq. (5) of
Hodges.

Notc that the term —;—012 + £2)(t — 10}, which represents a nonlinear shear
strain coupling term in the axial strain expression, is retained in this develop-
ment due to an assumption associated with material anisotropy. However, this

term has also been shown to be important for the analysis of pretwisted

isotropic beams subjected to axial loads[ 51,40,42].
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3.2.3  Explicit Strain-Displacement Relations

For acroclastic applications, it is desirable to express the strain components
in terms of the displacement components (u, v, w) of the clastic axis and the
clastic twist angle (¢) so that the structural model can be convenicntly com-
bined with the incrtial and acrodynamic models. To accomplish this, four of
the seven unknowns in Egs. (3.21) have to be eliminated by relating them to
u, v, w, and ¢.

The displacement vector of a point on the elastic axis is defined as:

u = RO - Iy (325)

where

rx) = r(x,0,0) (3.26)

Writing the displacement vector, u , in the undeformed element coordinate

system as:
U= ue + Ve + WE, (3.27)
Combining Eq. (3.27) with Eq. (3.25) gives:
Ro =15 + u@x + vey + w'e\z (3.28)
Differentiating Eq. (3.28) with respect to x gives:
A

+ wye

y x €z (3.29)

E, = (1+u,)e + v,e

The magnitude of E, is, from Eq. (3.10a) and (3.29):
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IE 12 = (L4 ug? + (V)7 + (WP = (145 (3.30)

The term g2 is neglected with respect to the term 2§,, duc to the small strain
assumption. Also, the term (u,)? is ncglected compared to the term 2u, by
applying the ordering scheme since u, is of order £2. Thercfore, Eq. (3.30) is

reduced to

Exx = Ux + _;‘(V,x)z + '5_(“’,,()2 (3.31)
The deformed curvatures and twist can be related to the Euler angles

(0, 0,.6;) by differentiating Eq. (2.12) with respect to X, and combining the

resulting cxpression with Egs. (3.3) and (3.12):

C x 8
A, A
c"'x =([TdC],x+[Tch[KO]) Cr,
&
AI
eX
= ([Tdc],x + [Tdc]['fo])[Tdc]T Qr; (3.32)
AI
€
Al
ex
= [x1% ¢
AI
€
where
0 O 0
[kgl=]0 0 7o (3.33)
0 —T 0
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[k1=| "™ o = (3.34)
—Kr -1 0
It follows that,
(k] = ([Tgedx + [Tgc1lxpd)[ Ty 1" (3.35)

Writing the deformed base vector of the elastic axis in the undeformed

curvilincar coordinate system, using Eqgs. (3.29), (2.8) and (2.9), yiclds:
E.=(1+u,) é\x + (v ¢ cos B + w , sin ﬁ)@,, + (W4 cos f— v, sin B)@C (3.36)

Recall that the transformation between the triad (€}, €;,€;) of the deformed
curvilincar coordinate systcm and the triad (g,, 3,,, 3() of thc undcformed

curvilinear coordinate system is a rigid-body rotation, defined by:

A, A
€x €x
A, A
e ¢ =0Ty 1< & (2.12)
A, A
e e(
where the transformation matrix, [ Ty ] , is given by:
[ Tdc ] =
1 0 0 cosd, o —sind, cos 6, sinf; ¢
0 cosby sinb, 0 1 0 —sinf; cos6, 0| (2.13)
0 —sinf, cosf, || sin6, 0 cosé, 0 0o 1

and the finite rotation is described by three Euler angles (6,, 6,,0;) . The se-
quence of rotation is assumed to be 6,,0, and 6, about 35, rotated é,, and ro-

tated éx, respectively. It should be noted that other sequences of rotation are
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also possible, and the form of the final sct of equations is dcpendent on the
choice of the sequence of rotations. Without loss of generality, assume that the
unit vector ¢, is carried to the direction of E,, i.e., tangent to the deformed
clastic axis of thc bcam. Bascd on these assumptions and Eq. (3.36), the de-
formation procedure can be described as follows (sce Fig. 3.1). Consider an
clement dx, on the undeformed clastic axis of the beam. The triad (3;, ?:,;, 35)
is attached to the clement and initially aligned with the triad (C,, ¢,, &) of the
undeformed curvilincar coordinate system. First, the element is carried by a
rigid-body translation, which docs not appear in Fig. 3.1, and then stretched
bv an amount u,dx . Next, the elcment is rotated by 6, about 35 while the tip
of the clement moves a distance (v, cos f + w, sin )X in the ¢, direction.
Then, the element is rotated by 0” about the rotated @,, while the tip of the el-
ement moves a distance (w, cos f — v, sin f)dX in the éc dircction. Finally, the
clement is rotated by 8, about the rotated €,, which is also its own axis. It is
assumcd that transverse shear dcformations and out-of-plane warping occur
after the deformation sequence described above.

The following trigonomectric relations can be obtained from Fig. 3.1 :

v ysinf—w, cos f

sinf, = ,
! /(l + )2 + (v, cos B+ w,sin ,6)2 + (w,cosf —v,sin ,8)2
vV Ux x €08 x5 X X

\/(l + u,x)2 + (v xcos f + W, sin ﬂ)2

cos 8,1 = > - —
\/(1 +u,) + (v cos f+ w,sin B)" + (W ycos f— v . sin B)
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v,cos f+ w,sinf
sin ; = u = (3.37)

\/(l + u,x)2 + (v cos f + w,sin [3)2

l+u,x

cos 0(

\/(l + u'x)2 +(vycos B+ w,sin ,8)2

The cxpressions given in Eqgs.(3.37) can be simplified to sccond order by using

the ordering scheme described in Chapter 2:

sin 6, ~ v sinf —w, cos f, cos 6” ~ ] (3.38a)
sin @, >~ v, cos f+w,sinf, cos Oy =~ 1 (3.38b)

Since the Euler angles 6,, 8, and 6, are of order ¢ for modcrate rotation, and
the typical magnitude of the parameter ¢ is 0.1 < ¢ < 0.2, therefore combining

Eqgs. (3.38) with the small angle assumption gives:

sinf,~0, = ¢, cos 0, ~ 1 (3.39a)
sin 0” ~ 8" >v,sinf - wcosf, cos (9,7 ~ | (3.39b)
sin 6y ~ b ~vycosf + w,sinf, cos 6y ~ 1 (3.39¢)

where the torsional twist angle 0, is replaced by ¢, in order to be consistent
with the usual notation in the literature.

Equations (3.39) can be used in the derivation of the relationships between
the curvature quantities (k,, k;, 7) of the deformed beam and the displacement

variables (u,v,w, @) . Combining Egs. (2.13), (3.33), (3.34) and (3.39) with
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Eq. (3.35) and applying the ordering scheme, the explicit expressions for the

deformed curvatures and twist are given by:
Ky = V€08 (B+ @) + W sin B+ )
Kp = =V ygsin B+ ¢) + Wiy cos (f+ )
T=10+ ¢, + P
wherc
bg = (— v ysinf+ w,cos B)(v 4, c0s B+ W, sin f)

The small angle assumption for ¢:

cos (f+ @)~ cosp — ¢sinf

sin (f+ @)~ sinf + Pcosf

has also been used in the derivation of Egs. (3.40).

(3.40a)

(3.40Db)

(3.40c)

(3.41)

(3.42a)

(3.42b)

The non-zero strain components in Egs. (3.21) can now be expressed in

terms of u,v,w and ¢ by substituting Egs. (3.31) and (3.40a-c) into Eqs.

(3.21a-¢) and applying the ordering scheme. The resulting expressions are:

= Vg + 5 (V) + 3 Wal = V[ cos(B+ §)— Lsin(B + 6)]

— W LnsingB + @)+ LcosB + #)] + 5"+ (@)

+ a,x‘l‘ + afo(c\l",n—ﬂq’"c)

+ 7 G"—xﬂ,x - TO?)(C) + C(ry-xg,x + 107”,)

)’m = )—,)01 + al}’,n_C(¢,x+ ¢0)
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Yxp = ¥ + oV r+n(d + é) (3.43¢)

The underlined term in Eq. (3.43a) could have been neglected when using a
strict interpretation of the ordering scheme. However, as mentioned in the
previous subscction, this term represents a nonlinear shear strain coupling term
in the axial strain expression, and is rctained based on the kinematical as-
sumption that the relative magnitude between the axial and shear strains is not
assumed duc to material anisotropy. Furthermore, this nonlincar tension-
torsion coupling term has been shown to be important for the analysis of pre-
twisted isotropic becam under axial loading[40,42]. In the derivation of the
structural opcrator, presented in the next chapter, terms associated with this
underlined term will be retained or neglected in the same way as the terms
which are onc order lower than thesc terms; when the ordering scheme is ap-
plied.

The seven unknown functions of the axial coordinate, x, in the strain-
displacement rclationships, Egs. (3.43a-c), become: u, v, \V,d),a,Em , and &,,.
It is important to notc that, Eqgs. (3.43) are now valid for small strains and

moderate deflections because the ordering scheme has been used.

3.3 CONSTITUTIVE RELATIONS
The constitutive relations are defined based on the following assumptions:
I. The material properties of the beam are linearly clastic and generally
orthotropic, i.c., orthotropic material whose material principal axes are

not aligned with the coordinate axes.
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2. The stress-strain relations for the beam are defined in the local cartesian
coordinate system, which has been defined in the development of the
strain-displacement relationships.

3. The stress components in the cross-section are cqual to zcro, i.c.,
Gpy = 0rr = 0,y =0 . This assumption is commonly uscd in classical

isotropic bcam theory[94], as well as compositc becam thcorics for thin-
walled box beams[5,7]; it is also used herc becausc helicopter rotor
blades arc typically thin-walled box beams.

For a gencerally orthotropic material, the stiffness and compliance matrices
can be fully populated containing up to 21 different cocfficients, and therefore
the material behaves in an anisotropic manner. These cocfficicnts arc func-
tions of the nine orthotropic material constants and threc Euler angles, which
arc used to relate the material principal axes with the coordinate axes of the
bcam. Expressions for these cocfficients in terms of the orthotropic material
propertics and the Euler angles are given in Refs. 53 and 95.

The anisotropic stress-strain relations for a linearly elastic body are written

as:
- [ T .~ _
[ 0 Cy Ci2 Ci3 Ciy Cys Cig || &xx
Ty Cpa Cyp Cy3 Cyy Cys Coye || &mm
% | _ | €13 Ca3 Ca3 Caa Cas Cag || ¢ (3.44)
U'IC C]4 C24 C34 C44 C45 C46 yr’{ :
g"‘f Cys Cys C3s5 Cy45 Css Cse ;’Xﬁ
| "] | €6 €26 €36 Cas Cso Cos || 77 ]

where C;;(i,j=1,2,3,4,5,6) are the stiffness coefficients. It is important to

notc that the stress components, g;; , and the strain components, ¢&; , reduce to
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the engincering stress and strain measures due to the small strain assumption
used in the derivations (Ref. 2, p.381).

Equation (3.44) can be written in partitioned form as:

{op} [Cpp] [Cpl { ey} _
= 345
{{Us} [Csb] [C55] {85} ( )
where
GXX EXX
{op} = <% » ; {ey} = < ¥« (3.46a, b)
Txn Y
Tyn Enn
{os} = < % ; {e} = < & (3.46c, d)
e n¢
Cii Ci5 Cyg Cyp Cy Cyy
[Cob] =] Ci5 Css Cs6 | ; [Css] =] Caz Ci3 Ciy | (3.46¢,1)
Cis Cs6 Ces Cou Cyy Cy
. Cip Ci3 Cyy
[Cos] =[Cyp]1 = | Cys Ci5 Cys (3.46g)
Cy Ci6 Cyg

Using thc assumption that stresses in the cross-section are cqual to zcro

(0 =0y = o, = 0), Eq. (3.45) becomes:
{op} | _ | [Cob] [Cpsl | {en}
{{0}}‘[[%1 [css]]{{es}} (347

The column matrix { g } can be obtained from the lower portion of Eq. (3.47)

intermsof [ Cy, ], [ Cy, ], and {¢, }, thus
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{e) = — [Ce1 ' [Cypliey) (3.48)

Substituting Eq. (3.48) into the upper half of Eq. (3.47), yiclds the constitutive

relations for the beam:

{op} = [Q1{e} (3.49)
where
Qn Qs Qe
[Q]=| Qs Qs5 Qs
Qs Q6 Qs (3.50)

— [Cpp] — [Cp1[Cs1 ' [Cy ]

Combining Egs. (3.46a-b) and (3.50) with Eq. (3.49), the expanded form of the

constitutive relations is written as:

0 <x Qi Qs Qs Exx
Ox¢ = Q5 Qss Qs Yx¢ (3.51)
Pxn Q6 Qse Qes Vo
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Chapter 1V

FORMULATION OF THE FINITE ELEMENT EQUATIONS OF
MOTION

The nonlincar cquations of motion and the corresponding finite clement
matrices are derived for cach bcam clement using Hamilton’s principle. These
cquations can be uscd for both the straight and the swept tip portion of the
rotor blade in the finitc clement discretization. Both the gcomcetric and mass
properties of the beam (i.e. blade) such as: pretwist, mass, stiffness, mass cen-
ter and tension (arca) center offsets from the elastic axis; are allowed to vary
in the spanwisc dircction. The external loads are represented by a set of gen-
cralized distributed forces and moments, which are defined in the undeformed
clement coordinate system (¢, (A:y, ¢,) . These generalized forces and moments
will be replaced by the corresponding aerodynamic forces and moments in the
acroclastic analysis.

Hamilton’s principle can be stated as

t
"(0U = 6T — 6W,)dt = 0 (4.1)
3

where U is the strain energy; T is the kinetic energy; W, is the work of external
loads which includes the effects 6f the nonconservative loads. Equation (4.1)
is an intcgral cquation which states that the total dynamic potential,

(U—-T—W,), is an extremum over the time interval: t, <t <t,.
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4.1 STRAIN ENERGY CONTRIBUTIONS
The total strain encrgy, U , is calculated using the strain components and
the constitutive relations defined in the local cartesian coordinate system, Eqgs.

(3.43) and (3.51), respectively. Its complete form is written as[97,98] :

U= ;—J‘ f Laii g5V 4.2)
where
dV = /g dxdnd{ 4.3)
with
g= det [gi-g]l=1 (4.4)

The determinant of the undcformed metric tensor, [ g;-g;], in Eq. (4.4) is
calculated from Eq. (3.18).
Using the constitutive relations, Eq. (3.49), the strain cnergy of a beam cle-

ment becomes:

U= %E"”A{ab 1T {0y, } dndldx
4.5)

- H(:"’”A{eb}T[QJ{ab}dndcdx

or, in expanded form:

| (e Exx Qi Q15 Qs | ( &xx
v-1 j j j X b | Qs Qss Qse [{ ¥ ¢ dndldx  (4.6)
077A (Y Qs Qs6 Qs Yy
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and its variation is given by:

sU = f 5{ep )T [Qp1{ ey} dndldx
5,

rle ésxx T Qi Q15 Qe Exx (4.7)
= I 2% Q5 Qss Qs [ < Y » dndldx
A Ovxy Q6 Qse Qes | (V2

The variations of the strain components can be obtained from Eqs. (3.43) :

Bty = By + VOV, + W oW, + (17 + (D) 06,
— (ncos f — {sin f)(0V o5 + PoW o, + W xx09)
— (nsin B + { cos B) (0w 4 ~ POV 4x — V xx0P) (4.8a)
+ da ¥ + L] (4 g —n‘l’,c)éa

+7n (5.}7)01,)( - 106}7)(4') + C(‘s)—]xc,x + TO‘S?M)

OV = OFxy + ¥ y0a — ( (8¢, + ) (4.8b)
5}’,(; = 57,(( + ‘P'Céa + r](6¢>'x+6¢0) (4.8¢)
where

0o = (—dv ¢sin B + 0w, cos B)(V x4 c0s B+ W, sin f) +
(4.9)
(—vxsinf+ w, cos B)(dV xx cos B + OW 4y Sin B)
It is assumed that the variations of the strain components are of the same
order as the corresponding strain components. The reduced material stiffness

matrix, [ Q] , is defined in a general form so that all of the coefficients can

be of the same order. This is important for the analysis of fiber reinforced

57



composite materials, because varying the ply angle of the laminatc will change

the relative order of magnitude of the material stiffness propertics.
Substituting Egs. (4.8) into Eq. (4.7) and integrating over the cross-scction,

the variation of the strain energy for a beam element, éU , is expressed in

terms of the stress and moment rcsultants as:

. _ = = <
SU = I {V (Bu, +v,0v,+w,0w,) + (Sg+ T )00 + Sy
0

+ [(Mysin g + M, cos B) + ¢ (_M)’, cos B — M sin §) ] 6V .4

+ [(- Mycosﬂ+ M, sin B) + ¢(M)’.sin[f + Mz cos f) ] 6w 4 (4.10)
+ [V (ﬁ§ cos f — M, sin B) + w,xx(ﬁ)’, sin B + M, cos B)] 6¢

+ Pyda, + (1gPx+ Ry)da + Moy, — M67 0 x

+ (Vg + 19M3) 875 + (V, + 10M;) 07y, } dx

where the stress resultants are defined as:
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<l

H

ui

JJ (Qpyexx t leyxg + Q]()‘/'m)d'ldC
A

i
2

— Vi [(EAn, cos B — EAL, sin ) —

EA [u, + %(v',()2 + %(“gx)zj + EACo(cb,x)2

¢ (EAn, sin  + EAL, cos f) ]
(4.11a)
— W [(EAn, sin 8 + EAL, cos §) +
@ (EAn, cos f — EA{, sin f)]
+ EABy(¢ (+ ¢é¢) + EADg  + (1gEADy’ + EABg)«
+ EAn, 7””‘ + EA(, 7,({,,( + (G,,A + 1oEA(,) 7101

+ (GcA - ToEAﬂa) ?x‘;

J‘J (Q6exx + Qs ¥xg + Qg6 Yrp) dndl
A

1 2, 1 2 I 2

G’?A [U,x + ? (V,x) + ?(\V,x) 1+ ?G"J ((b’x)
~ V. x [(GyAny, cos B — G, Aly, sin f) —

¢ (G,Any,sin f + G, Al cos ) ]

- (4.11b)

— W [(G,Any,sin B + G, Al cos ) +

¢ (GyAnp cos B — G,Aly,sin f) ]
+ EABy(¢x+ $g) + EAD;x, + (1gEAD; + EAB|3)a
* G"Ar’b 7X'I,X + G}]Acb ?xc’x + (G,,,'A + TOG’IA(b) )—})01

+ (GyrA — 190G, AT Ty :
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Vi = “-\(QIS exx + Qss¥xg + Qs6¥xy) dndl

] 2,1 2 1 2
= GcA [ny + —2—(\"x) + —Z—(WYX) ] + —?:-GCJ (d),x)
— Vxx [ (GyAn  cos B — G AL sin f)—
¢ (GeAn sin § + GCACC cos ) ]
. (4.11c)
— W [(GrAnsin B+ GyAl cos B)+
¢ (GyAn cos B - GCACc sin §) ]
+ EAB10(¢,X + d)o) + EAD6 a,x + (ToEAD6' + EAB“)(I
+ GCA'IC ?X”I,X + G{ACC 7XC.X + (G'ch"i' TchACC) 7”’

+ (GccA - TOC;(AP]C) ?xc

and the moment resultants arc dcfined as:

=z
i

y IJ- C(Qllgxx+QIS}’x§+QI6yxn)d’7dC
A

. 21 1 2
_ EAga[u,er%(v'x) +-2—(w,x)2] + 3EACy (9 )

— [(El,y cos p — El,, sin p)— ¢ (El sin p + El,, cos BV xx
. ) (4.12a)
— [(El, sin p + El,, cos B)+ ¢ (El; cos B — El,, sin B)Iw i
+ EABZ (¢’x+ d’o) + EA02 a,x + (TOEADZ' + EAB7)&
+ EI,K Yopx T Elrm Pxx t (G,’ACb+ TOEl,m))')x"

+ (GCACC - TOEI”C)?XC
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g

¥

N~

jf =N (Qppéxx + Qrsvyy + Qe vyy) dndl
A

1 ! ! 2
— EAn, [u + = (v )*+ ?(w,x)zj ~ S EAC|($ 0

+ [(Elg cos p— El,; sin ff) — ¢ (El;p sin f + El,; cos f)Jv

+ [(Elgsin B+ El,r cos )+ @ (Elr cos f — Elr sin ) ] w (3112b)
— EAB (¢, + ¢g) — EAD a, — (1gEAD/ + EABy)«

— Elgg Tapx — ElyrTxra = (GyAn, + 10EL ) Ty,

— (GpAn. — 1okl ) ¥y

JJ £ Qe Qusg + Qusrepanas

EAL, [u g+ (v, + 5 (w1 + EABy ¢,

. ) (4.12¢)
— (El,zcos § — EL,sinf)v . — (El,rsin f + El,, cos B)w
+ EADZ (l,x + (T()EADz’ + EAB7)(I + E]'?C 7)07,.( + Elm,, ?XCVX

+ (G"ACb + T()El'm) 7)0] + (G{ACC - TOE['IC) ch

_“. =N (Qqy éxx + Qs vy + Qe ¥yy) dndl
A
— EAn, [uy+— (v )° + 2

2 2
. ) (4.12d)
+ (Ely, cos f — El,,,; sin f)v ix + (Elyg sin p+ El,, cos BYW «x

(w,)*] — EAB, ¢ «

— EADI a'x —_ (ToEADl' + EAB6)a — E](C )_}X}I,X - Elnc ?xg‘x

- (G”Aﬂb + TOEI’?C)?W - (GCA?]C - TUE]CC)?XZ

6l



ol

o~

I

[ ¥ @uewt Qs + Querepanat
A

EAD, [u , + %(v.x)2 + —;—(w,x)z] + ;TEAD4(¢'X)2

— V. [(EAD; cos f — EAD;sin ff) —

¢ (EAD;sin f + EAD;cos f) ]
(4.12¢)
— W, [(EAD;sin f + EAD;cos f) +

¢ (EAD, cos f — EAD;sin f) ]
+ EA83 ¢’x + EAD3a,x + (ToEAD5+ EABS)(I
+ EAD 7y x t EAD ¥y + (EAD7 + 10EAD) 7y,

+ (EAD6 - ToEADl)?‘;

[[ @ =% Qe+ Qustg + Querep dnt
A

L
2

— Vxx [(EAD/’ cos § — EADy’ sin ) —

EADy [u+ -;-—(v'x)2 + -;- (w )*] + ~EAD{ (¢,

¢ (EAD/  sin § + EAD,’ cos §) ]
(4.12)
~ W« [(EADy sin B + EADy' cos ) +
¢ (EAD/’ cos f — EAD,’ sin §) ]
+ EABS' ¢,X + EADSa,x + (ToEAD3’ + EABS')(X

+ EAD]’ !

Yaipx T EADy ¥y x + (EAD7 + 1¢EAD;) ¥y,

+ (EAD6’ - TOEADl)?Xl:
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=~
I

X jj ('IZ+CZ)(Q|1€XX+Q15}',¢+Q](,Yx,,)d??dC
A

1

SEAC; (@

1
= EAC() [U'x + ‘2—' (v’x)z + % (\V'x)zj +
— Vxx [(EAC| cos f — EAC;sin f) —
¢ (EAC,sin f + EAC,cos ) ]
(4.12g)
— W x [(EAC;sin f + EAC,cos f) +
¢ (EAC cos f — EAC,sin ) ]
+ EAB4 d"x + E/A\D4¢Z'x + (ToEAD4' + EABQ)C!
+ EACI 7”le + EACZ fxc’x + (G"J + ToEACZ) ?m

+ (Gc.’ - TOEAC])?XC

|
M

x J‘IA[W'((leeu'Fst}’xg+Q55)’x,,) +

¥ 5 (Queexx + Qse Vxz + Qog V) 1 dndl

1

> EABg (¢ ,)°

= EABg[u, + %(v,x)2 + %(w,,f] +
— Vxx [ (EABgcos § — EABysin f) —
¢ (EABgsin f + EAB5cos ) ] (4.12h)
— W xx [(EABgsin § + EAB;cos f) +
¢ (EABgcos f — EAB;sin ) ]
+ EAB4(¢ x+ ¢¢) + EABgx, + (1gEABg' + EAB5)a
+ EABgTyyx + EAB;¥y « + (EAB |3+ 10EAB,),,

+ (EAB” - ToEAB6) 7)(
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wi
t

A
{(Qreexx + Qse ¥z + Qg6 Yxy) J dndl

= EA BO [U'x + ——;—-(\"x)2 + %(\V,x)z] + %EAB4 (¢,x)2
- Vx [ (EAB, cos B — EAB,sin ) —

¢ (EAB, sin § + EAB,cos §) ] (4.12i)
— W, [(EAB;sin f + EAB;cos g)+

¢ (EAB, cos f — EAB;sin B) ]
+ GJ (¢’x+ ¢0) + EAB}G'X + (ToEAB3' + EAB]4)“
+ EAB] ?m'x + EAB2 7x£,x + (EABIZ+ ToEABz)'}_‘”’

[72]]
-

J-L [n(Qysexx+ Qss¥xr + Qse ¥xy) —
{(Qeexx + Qs6vx; + Qo V) 1 dndl

1 2, 1 2
= EABg[u,+ ?(v’x) + T(W'x) ]+ Glg, (4.12j)
— (EAB) cos § — EAB;sin f) v, — (EAB;sin § + EAB; cos B W xx
+ EAB3(X’X + (ToEAB3' + EAB]4)a + EABI?X?],X + EABZ]_)XC,X

+ (EABIZ + ToEABz) ]_?m + (EABm - TOEABl)vx(

In the above cxpressions, the moment resultants M}, M, and S; have the same
definitions as M,, M, and S,, respectively. However the final expressions of
M,, M, and §,, include both terms of order ¢* and &%, while the final ex-

pressions of M/, M., and S include only terms of order &* only. This is because



that ‘M,, M, and S,, arc coupled with terms of order &, while M( M’ and S
are coupled with terms of e2. Note that the integrals P,. P, and T, have a unit
of seccond moment of force, instead of moment; they arc grouped with the
moment resultants for convenicnce.  The cross-sectional integrals associated
with the strain encrgy variation in Eqgs. (4.11) and (4.12) arc defined as fol-
lowing:

Modulus weighted area, first and second moments of inertia, and torsional inte-

grals:

EA = ”:\Q”dnd(: (4.13a)
EAn, = : J:\Q“ndnd{, (4.13b)
EA(, = L;\Q“Cdndc (4.13¢)
El,, = ”Ao,lczdndc (4.13d)
Ely; = HAQ“nzdndc (4.13¢)
El,; = ”AQ”ncdndc (4.130)
EAC, = ”AQ,,(n2+ %) dndt (4.13g)
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EAC, = ”A Q1 + [P dnde (4.13h)

EAC, = .::\Q“C(n2+cz)dndc (4.13i)
EAC; = :_;\Q“(r]2+C2)2 dnd{ (4.13j)
G,A = .' AQI(,dndC (4.13k)
G(A = .PLledqdc (4.131)
GyyA = ”A Qe dnd? (4.13m)
GyA = ;‘:\stdndc (4.13n)
G,A = .".:\QS(, dndl (4.130)
G, A, = "jAQlén dndg (4.13p)
G, AL, = _'LQ,GCdndc (4.13q)
G A, = : IAQM dnd{ (4.13r)
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G,Al, = HAQ,Sgdnd; (4.13s)
G, = f IAQl6(r12+C2)dndC (4.13t)
G,J = JJAQIS(n2+C2)dndC (4.13u)
ar = | fA Q3% + Qg L2 — 2Qsn0) dndl (4.13v)

Modulus weighted area, first and second moment warping integrals:

EAD, = ”AQHW dnd{ (4.142)

EAD, = J JAQ,,r;W dnd? (4.14b)

EAD, = ”AQ,,N dnd{ (4.14c)

EAD; = "LQ,,\Pzdndc (4.14d)

EAD, = L:\Q”(nz+cz)‘l’ dnd? (4.14¢)

EADs = JP‘:\Q”W(C‘P’,’—n‘F,C)dndC (4.14f)
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EAD, = ”AQ,S\P dndl
EAD; = ” Q6 dndl

A
ey = [[ Quev,,-n¥ ponet
EAD, = ”AQ“" Q¥ , —n¥, p)dndl
EADy - ”AQHC(C‘V,,,—U‘*’,C)dndC
EADy = ”:\Qll(C‘P,,,—n‘l‘,g)zdndC
EAD, - A Qi+ (Y., —n¥ o) dndl

EADg = || Qus(@¥,,—n¥ () dndl
L -A

EADy = [[ Qulc¥ , —n¥ o dnat
A
Anisotropic material stiffness coupling integrals:

EABj = J.J‘A(Qwﬂ — Q) dndl
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(4.14g)

(4.14h)

(4.14i)

(4.14))

(4.14k)

(4.141)

(4.14m)

(4.14n)

(4.140)

(4.15a)



EAB,

EAB,

EAB,

EAB,

EAB;

EABg

EAB,

EABg

EAB,

= J‘fA (Qisn — Qg {)n dnd{

- f(olsn ~ Qe 0)¢ dndt
J A

= | .A(Q|5n - Qi)Y dnd{

= ]| @usn ~ Qi) + D dnd¢

= J'\(lew,c + Qe Y, ;) dndl

= L Qs ¢+ Qi 'Y, y)n dndl

[

= ‘A(QISLP'{ + Qe 'V, ) { dnd{

YA

= || @Qis¥  + Q¥ )+ and
A

EAByg = j J, (@ssn = Qs D anat

EAB, = J-A(st‘*'.{*”st‘*’,n)d”dC
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(4.15¢)

(4.15d)

(4.15¢)

(4.150)

(4.15g)

(4.15h)

(4.15i)

(4.15))

(4.15k)

(4.151)



EAB), = ”\(Q%n ~ Qes0)dnd (4.15m)
EAB; = JI\(QS6W'C+Q%W'n)dnd{ (4.15n)

EAB), = ”\[(stﬂ—Qs(,C)‘l’,;w“(stn—Q(,6C)‘i’,,,]dndc (4.150)

EAB)5 = I,\[QSS(W,()2+066(‘*’,,,)2+2Q56‘P',1‘1”C]dr}dl (4.15p)

EABy = A(leﬂ‘—QmC)(C‘P,,,‘—ﬂq’,()dﬂdC (4.15q)

EABg' = \(le‘*’,("‘le‘l’,,,)(C‘i’,,,—rl‘*’,()drldC (4.15r)
JJ,

The modulus weighted area, EA, represents the axial stiffness of the beam.
EAn, and EA[, are the modulus weighted offsets of the tension (area) center
from the shcar center along 3,, and 3;, respectively. The modulus weighted
moments of inertia about the shear center, El,,, El,, and EI,; , represent the
bending stiffnesses of the beam. EAC,, EAC,, EAC, and EAC; are higher or-
der scction constants for modeling the axial-torsion coupling effects. The con-
stant GJ represents the direct torsional stiffness. It is important to note that
if the blade is isotropic and the warping amplitude « is replaced by ¢ ,, then
the section constants GJ and EAB,, can be combined to become the torsional

rigidity of the beam. The grouping of the modulus weighted section constants,
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dcfined in Eqs. (4.13), (4.14) and (4.13) is based on convenience and should
not be considered to be definitive.

The section constants defined in Egs. (4.13)-(4.15) arc calculated by a scp-
arate lincar, two-dimensional analysis which is decoupled from the nonlinear,
onc-dimensional global analysis for the beam. In this study, a composite cross
scction analysis modcl, consisting of a suitably modificd version of the analysis
developed by Kosmatka[56], is uscd to calculate the shear center location and
the modulus weighted scction constants of an arbitrarily shaped composite
cross scction. This modecl is based on the Saint Venant solution of a tip loaded
composite cantilever beam with a gencral prismatic cross section. It uscs the
principlc of minimum potential cnergy and 2-D finite clement analysis to cal-
culate the cross-scctional warping functions and stress distribution. The shear
center location is determined using moment equilibrium and the shear stress
distribution. The modifications madc in the computer code, implementing the
cross section analysis model presented in Ref. 56, consist of the replacement
of thc modulus weighted section constants present in the code, associated with
the one-dimensional global analysis described in Ref. 56, by the modulus
weighted section constants defined in this study. Secveral other two-
dimensional composite cross section analysis models are also available in the
literature[101,37,75,5], among these Ref. 37, which is also capable of modeling
cross scctions with arbitrary shape and anisotropic and nonhomogeneous ma-
terials, is probably the most general.

Integrating the strain energy variation, Eq. (4.10), by parts gives:
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IC
ouU = j [Y,0u + Y,0v + Y,ow + Y¢<Sq§
0

+ Y, da + Y,,éym + Ycéyxl]dx + b(U)
where

Y, = —{Vx},x

u

Y, = {my sin f + M, cos 8 + d)(m)'.cosﬂ — M. sin )+
S;cos f(—vysinf+w,cosB)} o

— { Vv —S;sin B (v cos f+w,sinB)} 4

Y, = { —ﬁ).cosﬂ+ﬁzsinﬂ+¢(_M§sinﬁ+ﬁécosﬂ)+

w
Sysinf(— v sinf+w cosf)}

— { Vv + 5 c0s B (V4 c0s B+ wyysinf)}

Yy = Vyx(Mjcosf—M;sinf) + w’xx(ﬁj’,sinﬂ+m;cosﬁ)

- { gx + Tx¢,x },x

Y= —{M}x+ Vg + 1M

and the associated boundary terms:
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(4.17a)

(4.17b)

(4.17¢)

(4.17d)

(4.17¢)

(4.17f)

(4.17g)



_ I, _ _ _ _
b(U) = {Vi}ou| + {Mysinf+ M,cos f+ ¢ (Mcos f — M, sin ) +
0

- 1
Sxcos f(— v sinf+ W, cos f) }ov, ¢

+ [ - {mysinﬁ’+ﬁ/l_zcosﬂ+d>(m)’.cos/3—l\~1;sin[)’)+
S, cos B(— Vxsinf + w, cos ff) Yx t VXV,X -
—_— . le
Sesin B (v, cos B+ w, sinf)] 6\',
t ¥ 0

+ —m),cosﬂ+ﬁzsinﬁ+¢(M§sin[3+ﬂ,’_cos[)’)+
. | (4.18)
S;sinﬂ(—\'xsinﬂ+wxcosﬂ)}éwxl

’ ’ )

+ [ —{ —m).cosﬂ+mzsinﬁ+¢(M§sinﬂ+ﬁ,’_cos[)‘)+

Sesin (= v, sinf+ w  cosf) Fx + VW +

— 1
Sy €os B (v xxcos B+ W 4 Sin f) ] ow (:

1

e

= = e = I, — _
+ {Sx+Tx¢'x}o¢>|0 + Py o]~ (M) 67|

S
+ (M) org |
The boundary terms contained in Eq. (4.18) are latter combined with the

boundary terms associated with the variations of kinetic cnergy and work of

external loads to obtain the boundary conditions associated with the equations

of motion.
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4.2 KINETIC ENERGY CONTRIBUTIONS

The total kinctic encrgy of a beam clement is defined as:

T=|?-”.J‘vpV'VdV=—;-ﬂeIprV-VdndCdx (4.19)

where V is the velocity vector of an arbitrary point on the beam with respect
to the inertial reference frame.
The position vector, R, of a point on the deformed becam is written, by

combining Egs. (3.28), (3.26), and (3.1) with Eq. (3.4), as:

" ~ A A A
R =cjii + heip, + (x+u)c, + vey, + we,

+ nE, + {Ef + a¥ e (4.20)

RB+RC

where

Rg = ¢, (4.21)

is the position vector of the blade root with respect to the hub center, and

2 A A A
Rc = heip, + (x+u)e, + vey + we, + nE,
(4.22)

+ {E; + ¥ ey

is the position vector of an arbitrary point on the deformed beam with respect
to the blade root.
The velocity vector, V, is calculated by differentiating the deformed posi-

tion vector, R, with respect to time:
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d
V= {d—'t‘}m = Vy + Ve (4.23)

where Vy; and Vi are the time derivatives of Ry and Rc, respectively. The
notation {((l_lt} denotes time derivative with respect to the nonrotating,
nr
. AoAA Lo C
hub-fixed coordinate system (i, i, K,,), Which is an inertial reference frame.
In this derivation, the velocity components are cxpressed in terms of the
undcformed clement coordinate system (3,‘, éy, éz) . It follows that, the velocity

vector of the blade root, V is:

A A
VB = QkT X RB= Qe”r

(4.24)
A A A
= VpxCx + vby ey + V€,
where
Vi 0
' 0 cos 8
Viy p= Q0 [Ty 1L Ty 14 1 ¢ = Qe [Ty ] P (4.25)
Vi, 0 — sin BP
For the straight portion of the blade
Vix 0
Voy p = Qe < o5y (4.26)
Vi, — sin Op
For the swept-tip element
Vix = sin Agcos 6, — cos Agsin A, sin 6,
be = Q¢ cos A cos Gp — sin A sin A, sin Bp (4.27)
Viz —cos A, sin 6,
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The velocity vector, V-, which is the velocity of an arbitrary point on the de-

formed becam relative to the velocity of the blade root, is:

Ve = Re + 0 x Re (4.28)
where w is the angular velocity of the undeformed clement coordinate system
(o G)., ¢,):

G = QK + 0,0, = 0,8 + Q8 + 0,8, (4.29)

which is the sum of thc constant angular velocity of the rotor and the angular
velocity of the blade due to the harmonic components of the blade pitch set-
tings. The notation () denotes the time derivative with respect to the
(Gx, ?:).. ¢,) system when () is a vector, and it is the usual time derivative when

() is a scalar. Rccall that the pitch angle 6, is:

0, = 0 + 0)c cosy + 0y siny (2.5)
Thercfore,

()p = Q(—0,. siny + 05 cosy) (4.30)

b, = —Q%(0)c cosy + 6y siny) (4.31)

In forward flight, the blade pitch angle 8, is a function of the blade azimuth
angle , thercfore it contributes to the angular velocity of the blade. For the

casc of hover, Gp and ép vanish since the cyclic cosine 6, and the cyclic sine
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. . A A A
6, arc cqual to zero. The angular velocity components in the (c,, ¢,, ¢,) system

is obtaincd by:

Q, 0 Bp
Qp > = [Tp1| [Tl 0p + < g
Q, Q 0
i (4.32)
Qf, + 6,
= [ T(:b] Q sin Gp
Q cos Gp
For the straight portion of the blade
Q, Qpf, +6,
Qy > = < Qsinf, (4.33)
Q, Q cos Gp

For the swept-tip element

(Qp, + Bp) cos Agcos A, — Qsin 0 sin Ag + Q cos 0, cos Agsin A,
y =< (Qf,+ Op) sin Agcos A, + € sin 8, cos Ag + Q cos 6, sin Agsin A,
— (Qﬁp + Op) sin A, + Q cos Bp cos A,

D D D
N »”

(4.34)

The position vector R¢ can be written in terms of the (C,, €,, €,) system by

substituting Eqgs. (3.10b,c) into Eq. (4.22):
Rc = Ry, + Ry e, + Ry,E, (4.35)

where
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Rex hy+x+u N a‘|’+rﬁm+C?x’;

I
Rey p = hy +v + [Ty ] 1 (4.36)
R., h, +w ¢

In Eq. (4.36), h,, h, and h, arc the components of h,, which is the offset of the

in-board nodc of the beam finite clement from the blade root, in the (f:x, f:y, c,)

system:

X hc
hy > = [ch]{ 0 } (4.37)
0

hy h,
h —
y =130 (4.38)
h, 0
For the swept-tip element
hy cos Ajcos A,
hy 5> = h, < sinAgcos A, (4.39)
h, —sin A,

The matrix [ Ty ] , which is the transformation between the deformed
curvilincar coordinate system (é;, 3,’,, eg) and the undeformed clement coordi-

A A A . .
nate system (€,, €y, €,) , iS given by

Combining Egs. (2.9), (2.13) and (3.39) with Eq. (2.15) and applying the or-

dering scheme, the transformation matrix [ T4 ] becomes:
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( | Vx Wy
LCOS(B+ @)  cos(B+ @) sin(f + @)
[Tg.1=1- w Sin(f + ¢) (4.40)
xS+ @) —sin(f+ @) cos(f + ¢)
- \» xCOS(f+@) +rtlcosf +1.sin ﬁj
where
T = (Vxsinf—w,cos f)(v,cosf + w,sin f) (4.41)

A comparison of the transformation matrix [ Ty, ] with similar transformation
matriccs by other authors is presented in Appendix A.

Differcntiating Eq. (4.36) with respect to time gives:

Rc‘ . . _— —_—
O 0 oV + vy + g
RC)’ = { \:’ } + [ Tde ]T { 0
R W 0
“ (4.42)
_ a¥ + ?ﬁm + C}’,(
{

where the matrix [ Ty, ] is:
[Tdc] =

0 Vi W

—Vycos(B+ @) w sin(B+4) — ¢sin(+ ¢)
+ ¢ {» sin(f + @) — w x COS(B + ¢)}

Vo sin(f + ¢)— W, cos(f + ¢)
{Xv cos(f + ¢) + w «Sin( + @)}

X

¢ cos(B + ¢)

— ¢ cos(B+ ¢) — ¢ sin(B + ¢)

+ 1. cos B + 1. sin §

=
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(4.43)
with

1 = (Vysin f — W cos B)(v , cos B+ wysinf) +

(4.44)
(v xsin f — w , cos B)(V , cos B + W 4 sin §)
Therefore, the time derivative of R is:
) A A A
Re = R ey + Rcy e, + R, ¢,
= [(nsin B+ Lcos B)(— W, + ¢V + V) — (ncosf—{sinp)
(¥ + QW + GW )+ 1t + ¥ + iy + LT ] e (4.45)

+ [v—¢(nsinf+{cosB)—{ cos3ﬁ (VW5 + VWl ’e\y
+ [ W+ ¢(ncosp—sinf)]e,

where the expressions of R, R,, and R, have been obtained by combining

Eqs. (4.40), (4.41), (4.43) and (4.44) with (4.42) and applying the ordering

scheme.

The term @ x Rg is obtained by combining Egs. (4.29), (4.35), (4.36) and

(4.40):
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® x Re = (QR;, — Q,R.)¢, + (Q,R, — QR e, +
(QRey — QR ,)E,
= {(nsinf + {cos )(Qy + Q,¢) -
(n cos f — {sin )(Q, — Q) +
Qy (h, + W)= Q, (hy + v) + { cos° QY W, } &,
+ {(rsinf+Lcosf)[ —Q;+Q, (v, ~w, )] -

(mcosfp—Lsinf)[ Qb +Q, (Vi + oW, )]+

(4.46)

Q, (hy+ X+ u+a¥ + 17y + {Fy) — Q, (h, + W) } &,
+ {(ncosB—{sin B[ Qe+ Oy (v + dw )] -

(nsin B+ { cos B) [ Q6 + Q (dV  — W) ] —

Qp(hy+ x+u+a¥ + 07y + {Fyg) + Qc(hy + v) -

3 A
{cos'fQv, w, }e,

Terms up to order & have been retained in Eqs. (4.45) and (4.46) since some
terms of order €* can not be neglected in the derivation of the kinctic cnergy
variation, 6T , when the dot product of the velocity vector, V , and its vari-
ation, oV, is carried out.

The total velocity vector, V, is obtained by substituting Eqs. (4.45) and

(4.46) into Eq. (4.28) and combining Eqs. (4.24) and (4.28) with Eq. (4.23):
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V = {(nsinf+{cosB)(— W + v, + oV, +Q +0Q,0)~
(ncos B — {sin BY(V , + W, + oW, + Q, — Q. 8) +
0+ & + nyy, + (Vg + Qy(h, + W) -

Q, (hy + V) + { cos B W, + Vi } &
+ {(rsinp+{cos B[ —Q+Q, ¢V, —W)—¢]-

(mcosB—Lsin Y[ Qb +Q,(vi+ow,) 1+

Q,(hy+x+u+a¥ +n7m+C7,£)—Qx(hz+w)+

(4.47)

v —{ cos’B (VW x + VW )+ Vi ) ’éy
+ {(mcos p—sin Y[ Qu+ Qu (v + oW ,)+ ¢1-
(msinf+{cosf)[Qup +Qu(dvy—Wy)]-

Qy(hy +x+u+a¥¥ + Ty + V) + Qy(hy + V) +

w-—{ cos3[3’va,xw,x + Vi, } 'e\z

The variation of the velocity vector, 8V , is:
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oV = {(npsinff+cosB)[ — dw , + (bév,x + PV, + v,x5d> +
(Q, + V)06 1~ (ncos f— L sin B)[ 6V, + pow , +
POV  + W, 50 — (Q, — W )¢ ]+
Su + s + néim + {8y, + Q0w — Q,6v +
{ cos3/)’Q,_ (v.xéw'x + w,x6v,x) } Qx

+ {(nsin B+ {cos BY[Q, (Pov , + V09 — 0w ) — 8¢ ]~

(ncos B —{sinB)[(Q, + Qw,)0¢ +
(4.48)
Q, (5v'x + ¢6w’x)] +Q, (0u + You + rzé?m + C5T,“;) -

Q6w+ ov—{ cos3[3 (VoW + Vv OW 5 +
WOV + W OV, )} é\y
+ { (g cos f—{sin f)[ QO + oW , + W ,5) + 09 ] —

(nsin B+ { cos B) [ (Q, + va’x)&ﬁ - Qy (6w’x - d)év’x)] -

Q, (ou + Wou + r]67m +{07y) + Q)0 + dw —

3 ’ A
£ cos"BQ (v 0w + W, 3V, )} e,

The variation of the kinetic energy, 6T , for a beam clement is, from Eq.

(4.19):
6T = jo 1” p V-8V dpdrdx (4.49)
A

Substituting Eqgs. (4.47) and (4.48) into Eq. (4.49) and integrating 6T by parts
with respect to time between two arbitrarily specified configurations at times

t, and t, give:
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le
oT = f JJ plZ,0u + Z,0v + Z,ov, + Z, 0w + Z,,0W
0Y"A (4.50)

+ Zyoh + Z,0u + Z, 67, + Zy 67, ] dndldx

where

Z, = (nsinf+ cos )L — Q,Q, — Q + W, — 20,0 + (Q,Q; — Q)b —
@2+ QD w I+ (1 cos f— L sin fL — Q0 + Q, + ¥ -
20,6 — (Q,Q,+ Q)P — Q@2+ 0Q)v,].
— i = Wi — nihyg, — (Fy + 20,V — 2Q,W (4.51a)
+(Q2+ QY (b, + X+ U+ Wa + 1 + {Fy)
— (2,9, — Q) (hy + v) = (Q, + Q) (h, + W)

+ szby - vabz — Vix

Z, = (nsin p+ { cos B)L — QQ, + Q, + ¢ +20,W , +(QQy + Q)w , —
Q2+ Q%) ¢ + (7 cos f — { sin B) [QF + QF +
20,7, + 20,6 + (Q,Q + QW — (,Q, — Q)]
— V=20, (0 + Wa + Ny + Pyr) + 2QW (4.51b)
—(Q,Q, + Q) (hy+ X+ u + Ya + 1y + {Vx)
+(@2+ Q) (hy + V) — (QQ, — Q) (h, + W)

+ vabz - szbx - vby
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Z, = (nsin p + ¢ cos f) [(Q + Q) (hy + x) — (QQ, —Q,)h, -

(QQ, + Qph, + Q,Vp — QVp, — Vi, 16
+(ncos B —{sin ) { i+ Wa + nyy, + Ly — 20,V +

20, — (QF + Q) (y + X + U+ Wa + 7y + (Tyg) +
(QQy — Q) (hy + V) +(Q,Q, + Q) (h, + W) —

) (4.51¢)
QVpy + Vg, + Vi)
: 2 2 2 .2 v .

+ (QXQy — Q) (1" cos“f + {“sin“B — 2n{ sin B cos B)
+(Q,Q, + Qy) [ (712 — Cz) sin f cos B+ n{ ( coszﬂ — sinzﬁ)]
+ L cos’B [(QQy + Q) (0, +X)— (@2 + QD) hy + (QQ, — Qh,

+Q,Vp, — Q. Vy, + vby Jw

Z = (nsin B+ { cos ) [QF + Q2 — 20w, + 20,0 +
(@0, — QW , +(Q,Q, + Q)] — (1 cos B — { sin B)
[9,Q, + O + ¢ + 20,0, — (@0, - Qv , — (QF + 02) §]
— W+ 2Q (0 + Wi + nyy, + (Fy) — 2Q (4.51d)
—(QQ, — Q) (he + X+ u + Yo + 17y, + {Fyy)
+(Qp+ Q) (h, + W) — (0, + Q) (hy + V)

+Q Vi — Q Vg, — Vi,
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Zy = (nsin B+ cosB){ i+ Wa+nhy + g — 20,V +2QuW —
Q2+ Q) (0, + X+ u+ Ya+ 1T + [Tyg) +
(Q,Q, — Q,)(hy + V) + (Q,Q, + Q) (h, + W) = Q, Vi, + QuVy, + Vi)
— (1 cos B — { sin f) [(QF + Q) (h, + x) —

Q2,0 - Q)hy = (Q,Q, + Qph, + Q,Vpy — QVy, — Vil ®  (4.51c) .
+(Q,0, - Q) [ (1%~ {%) sin f cos f + nl (cos’ — sin’B) ]
+(Q,Q, + Qy) (n? sin®B + {2 cos?B + 2n¢ sin B cos B)
+{cos B [(QQ, + Q) (hy + ) — (2 + Q) hy + (QQ, — Qh,

+ szbx - vabz + be ] V.X
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Zy = (nsin B+ {cos B){V+20Q, (i +~Va+m'7x,,+c;'7x£)—
20, + (00 + Q) (hy+ X + U+ Yo + 7y, + var) =
2 2 . .
(U Q) (hy + V) + (@0, ~ Q) (h, + W) + Q,Vp, — QVy, + Vy,
+ Q)+ Q) (b + X) = (@0, — 2 )h, — (2,0, + Qp)h, +
Q,Viy = QVp, = Vi d v } = (1 cos f — { sin §)
(W = 20, (0 + Vo + nfig, + () + 20,0 +
(0, - Q) (he+x+u+ Yo+ oy, + (v +
. » ' (4.51f)
(QQ, + Q) (hy + V)= (@ + QY (h, + W) — Q Vi, + QV, + Vy,
+ Q)+ Q) (0 + X) = Q0 — Q)hy — (Q,0, + Qh, +
QVpy = OV, = Vi dw, ) — 2+ () (9 + Q)
+(Q5 — Q) [0~ £7) sin B cos B+ n¢ ( cos?B — sin2B)]
2 2 2 . 2 .
= Q.Q, [(n" = {*)(cos“P — sin“B) — 4n{ sin B cos ] —
(QF — Q) T(® - 1)) (cos®B — sinB) — 4n{ sin f cos B —

4Q)QZ[(712 - CZ) sin fcos f + nl ( coszﬁ - sinzﬂ)]} ¢
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Z

o d

Y {(n sin B+ { cos )L — QQ, — Qp + W, — 20,6 + (0 — Q)0

— (Q$ + Qf)w,x] +(ncosf—Lsinf)[ — Qny + QZ +Vy

— 206~ (0, + Q) — Q) + Q) V,]

— U= Wa —nyg, — {hy + 20,V — 2Q,Ww (4.51g)
+ Q2+ Q) (h+ X+ U+ Yo+ 1T + L)

—(QQy — Q) (hy + V) = (Q,Q, + Q,)(h, + W)

+Q,Vpy ~ QVp, — Vix }

n{(n sin B +  cos )L — Q,Q, — Q + W, — 20,6 + (Q,Q, — Q)P

— @2+ Q2w ]+ cos f— {sin f)[ — Q0+ Q, + ¥,

~ 204 — (QQ, + Q)P ~ (€ + Q) V,]

— U= Wi — Yy, — Ly +2Q,V - 2QW (4.51h)
QL+ Q) (hy + X + U+ Yo+ NTy + {Txp)

— (2,9, — Q) (hy + V) = (Q,Q, + Q) (h; + W)

+Q,Viy — OV, — Vix }
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Z; = Hsin f+ {cos L - Q 0, — QO + %, ~ 206 + (Q,Q, - Q,)¢

_ (Q;"T + Qyz,)\v‘x] +(cosp—Lsinf)[ - Qny + Qz b,

. . N
- 20,6 - (Q,Q, + Q) — (5 + Q) v,]
- i —Wa - r,';-?x,, - c?xg +2Q,0 - 20w
+(QF+ Q) (hy+ X+ u + Yo + NT ey + L)
-(QQ, - Q) (hy + V) — (QQ, + Qy)(hz +w)

+Q,Vpy — QVy, — Vig }

(4.511)

In Egs. (4.51), the expressions of (Vy,, V,,, V,,) and (Q,,Q,. Q,) are obtained

by differentiating Eqs. (4.25) and (4.32), respectively, with respect to time:

Vix 0
Voy p = — QB¢ [Tep] < 570
Vi, cos b,
Qx éP
Q> = [Tl Q6,cos 05
Q, —Qfsin 6,

Intcgrating Eq. (4.50) over the cross scction gives:

e _ _ _ _ _
6T = Jc[Zuéu + Z,ov + Zyov, + Z,,0w + Z 6w,
0

+ Z¢5¢ + 215(1 + —Z_"é?xn + ZCafxcjdX

where
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Z, = (mygsin B+ mipcos f)[ — Q,Q, — Q + ¥y — 2Q,¢
+(Q,0, — Q) - (@ + QD) w ]+ (M cos f — mlp, sin f)
[— 0,0, +Q,+V,— 20— (QQ,+ 0 — Q) + Q)]
— mlil — 20,¥ + 20 ~ (@) + Q) (h, + X+ u) + (4.55a)
(0,0, — Q) (hy + V) + (QQ, + Q) (h, + W) = Q,Vpy + QVy,, + Vil
. 2 2 = 2 2\ =
— mDg[& — (Q + Q) a] — mny [y, — (Qy + Q) V]

— iy — (O + )7y

Z, = (mngsin f+ m{ycos )[ — QQ, + QO + ¢+ 2Q,W , +
Q0 + QW , — (QF + Q2) ¢] + (N cos B — My sin )
[Q2+ Q2+ 20,V + 204 + (QQ, + Qv — (Q,Q, - Q)]
— m[V + 20,0 — 2Q,W + (Q,Q, + Q,) (hy + X + u) — (4.55b)
@2+ Q) (hy + V) + (Q,Q, — Q) (h, + W) — QVp, + Q Vi + Vi, ]

— mDy [2Q4 + (Q,Q, + Q)] — mn, [202?,0, +(QQ, + Qz)vm]

— Ml (297, + (Q,Qy + Q,)7x]



Z, = (mnysin f + ml, cos ) [(QF + QF) (hy + x) -
(0, — Q)hy — (0, + Qh, + @,V —Q V-V 1¢
+ (M, cos f — m{; sin f) { i — 2Q,v + 2va'v - (93 + Qg)
(hy+ X+ u) +(QQ, — Q) (hy + V) + (Q,Q, + Q) (h, + W)
~Q,Vpy + Q .V, + Vi }
+ (mDj cos f — mD,sin f) [@ — (Qg + Qg)a]
(4.55¢)
+ (Imgg cos f — Im,; sin f) Wxn - (Q)Z, + Qf) Vo)
+ (Imy cos f — Im,, sin f) [¥,, — (Qi + 02 Vxz]
+(Q,Q, — Q,) (Imgg cos’f + Im,y, sin — 2Im,,, sin f cos B)
+(Q,0Q, + Qy) [ (Imgg — Imy,) sin B cos § + Im, ( cos?p — sinB) ]
+ m{p cos’B [ Q0 + Q,)(hy + x)— (QF + Q) hy + (Q,Q, — O h,

+ szbx - vabz + vby ] w,x

Z, = (mngsin B + my, cos ) [QF + Q2 — 20w, +2Q,¢ +
(Q,Q, — Q)W  + (Q,Q, + Q)] — (mn, cos B — m¢, sin f)
[Q,Q, + O+ $+ 20,0~ (Q,Q, — Qv, ~ (@2 + QD) ¢]
- m[W - 200 + 20,V + (Q,Q, — Q) (hy + X + u) - (4.55d)
(@5 + QD) (b, + W) + (@0, + Q) (hy + V) — Q Vi, + Q Ve + Vi, ]
+ mD[2Qyx ~ (,Q, — Q] + mn,[2Q,3,, — (Q,Q, ~ Q)]

+ M [2Q07, ~ (Q,Q, — Q)]
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Z,, = (mngy sin B+ mdy cos B) { i — 20,V + 2QW — Q5 + Q)

(hy + X + u) + (Q,Q, — Q) (hy + V) + (Q,Q, + Q) (h, + W)

—Q,Vpy + Q. Vp, + Viy }
— (miy €08 B — M, sin B) [(QF + QP (hy + X) -

(2,0, — Qhy = (Q,Q, + Qph, + Q,Vpy — QVy, — Vi, 16
+(mD) sin f + mD; cos §) [ — (@ + Q) a]

(4.55¢)

+ (Imgy sin B + Imy; cos f) (¥, — (Qi +0d) Pxn
+ (Im,yg sin B + Im,, cos ) [ — (QF + Q) 7]
+(Q.Q, — Q){(Img; — Im,,)sin B cos § + Imy( cos>B — sin’B)]
+(QQ,+ Q).)(lmc{ sin’g + Im,, cos2f + 2Im,; sin B cos f)

+ M g c0s B(Q,EL, + €2,) (hy + X)— @2+ Qdhy +(Q,Q, - Qh,

+Q, Vi, — Q. Ve, + vby]\"x
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Zy = (mpgsin B+ m{ cos f) { V + 2Q,0 — 20, W + Q0 +Q,)
(hy+ X+ 0) = Q2 + QD) (hy + V) + (,Q, — Q) (h, + w) +
Q,Vpx = QVp, + Viy +
(€ + Q2) (hy +X) = (QQy — Qhy — (Q,Q, + Qh, +
Q,Viy = Q@ Vi, — Vil V5 } — (mn cos B — m{, sin f)
{W—2000 + 20,7 +(Q,Q, - Q) (hy + X+ u) +
(@0, + Q) (hy + V) = (QF + Q) (h, + W) — Q Vi, + QVy + Vi,
+ [(QF + Q) (h, + X) — (Q,Q, — Qhy — (QQ, + Qh, +
Q,Viy = QyVp, = Vid W, } = (Im,, + Img) (6 + Q)
+(Q5 — ) [(Img; — Im,,) sin § cos f + Im, (cos? — sin?p)] (4.350)
- QQ, [(Img — Im,,)( coszﬂ — sinzﬁ) — 4Im,; sin f cos §]
+(mDj sin § + mD, cos §) [2Q,d + (2,2, + Q,)]
+(mDj cos f — mD,sin §) [2Q8 — (Q,Q, — Q)]
+ (Imgg sin B + Im,, cos f) [ZQZ'?M +(QQy + QZ)?X,,]
+ (Imgg cos B — Imy sin B) [2Qy¥5, — (2,2, — Qy)y,]
+ (Im,; sin § + Imy, cos §) [2Q,7; + (Q,Q, + Q)]
+ (Imy,; cos B — Im,, sin B) [2Q.¥; — (Q,Q, — Q)]
~ {2 — Q2)[(Img; — Im,,,)( cos’ — sin’p) - 41m, sin § cos f] —

4Q,Q,[(Img; — Im,,}sin f cos § + Im,( cos’f — sin®B)]}¢
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Z, = (mDysin f + mDycos B)[ — Q,Q, — Q + W, — 20,¢
+( Q0 — Q) — (@ + Q) w ] + (mDj cos § — mD,sin B)
> = . . 2 2
[0, +Q,+V,—2Q0,6 - (QQ, + Q)b — (Qy+ Q)]
— mDglil — 2Q,V + 2QW — (Q2 + QJ) (h, + X + u) + (4.55g)
(@Q,Q, — Q) (hy + V) + (Q,Q, + Q) (h, + W) = Q,Vyy + QVp, + Vi, ]
— mD4[& — (@2 + Q) a] — mDy[§,, — (2 + Q)7 ]
3 y T3z 1LY y T >%z) Y

— mD,fy — (QF + Q) T

Z, = (Img sin B + Im,r cos B)[ — Q,Q, — Q + W — 20.¢
+(Q,Q, - Q) — Q2+ Q) w 1+ (Imgg cos f — Im, sin )
[ Q0 +Q,+ ¥, — 20 — (QQ, + QW — (O] + Q) V]
— mng[i — 2Q,¥ + 2QW — (QF + Q) (h, + x + u) + (4.55h)
(Q,Q, — Q) (hy + V) + (Q,Q, + Q) (h, + W) — Q,Vp, + Q Vp, + Vix]
. 2 2 = 2 2, -
—mD;[@ — (Qy + Q) a] — Img[Yy, — (Qy + Q;) ¥y ]

~ Imy [y — @2+ Q) 7]
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Zy = (Imysin f + Im,,

cos f)[ - Q,Q, - Q + ¥, — 20,4
+ (2,0, = Q)b — (@) + Q) w ]+ (Im, cos f - Im,, sin f)
[~ Q0 +Q,+¥,-206 - (QQ,+ Q) — () + Q) v,]
= ml i = 20,0+ 200 — (2 + Q) (h + x + u) + (4.55i)
(0, — Q) (hy + V) + (2,0, + Q) (h, + W) — Q, Vi, + Q Vi, + Vi, ]
.. 2 2 = 2 2, —
— mD,& — (O + Q;)a] — Im,, [F,, — (Q + Q) 7,,]
= 2 2. —
The scction integrals associated with the Kinetic energy variation in Egs.

(4.55) arc defined in the following manner:

m = J.J p dnd¢ (4.56a)
A

mn, = JI\ pn dndf (4.56b)
I

m,, = ,J dApC dnd¢ (4.56¢)

m,, = p(? dnd{ (4.56d)
YA
[ 2

[mCC = J'JApr] dnd{ (4.56¢)

tmyg = | [ ont anat (4.561
YA
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mD, = JJ p¥ dndl (4.56g)
A

mD, = J pWn dndl (4.56h)
YA

mD, = J pW{ dnd( (4.56i)
“A

mD; = W2 dndl (4.56])
J JA

In Egs. (4.56). m is the mass per unit length of the beam; m#,, and m{_, are the
mass weighted offscts of the mass center from the shear center along 3,, and
6;, respectively; Im,,, Im,, and Im,, arc the mass moments of inertia per unit
length of the beam about the shear center; mDy, mD,, mD, and mD; are the
mass weighted warping integrals.

Integrating the kinctic energy variation, Eq. (4.54), by parts gives:

le — —_ — —_— —_—
0T = J {Z,0u + [Z,—(Zy) )6V + [Z,,— (Zw)x] ow
(

) (4.57)
+ Zy 00 + Z, o + Z, 0yy + Z; 875 Y dx + b(T)
where the associated boundary terms are:
— ke _ L,
b(T) = Z,ov| + Z,dw 0 (4.58)
0

The boundary terms contained in Eq. (4.58) are latter combined with the

boundary terms associated with the variations of strain energy and work of
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cxternal loads to obtain the boundary conditions associated with the equations

of motion.

4.3 EXTERNAL WORK CONTRIBUTIONS

The cffects of the generalized (nonconservative) distributed forces and mo-
ments are included bascd on the principle of virtual work. In the aeroelastic
analysis of rotor blades, these generalized forces and moments will be replaced
by the corresponding acrodynamic forces and moments based on the aero-
dynamic model being used.

Virtual work is the work done by the distributed forces and moments acting
through the corresponding virtual displacements and virtual rotations, respec-
tively, about the deformed cquilibrium position. The mathematical form of the

virtual work done on a beam element is given by:

SW, = (OWop + (BWo)g

I, 1 ~ (4.59)
= J (P-dou)dx + J- (Q-90)dx
0 0

where P and Q arc the distributed force and moment vectors, respectively,
along the elastic axis; éu and 50 are the virtual displacement and virtual ro-
tation vectors, respectively, of a point on the deformed elastic axis. The dis-
tributed forces and moments are defined in the undeformed element coordinate

A A A
system (c,, €,, €,) as:

P = p,e + p,& + p,¢, (4.60)
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A A A
Q = qu¢, + qycy + q; & (4.61)
For convenicnce, the virtual displacement du is also defined in the (c,, ?:y, ¢,)
system:
A A A
ou = duc, + dove, + owe, (4.62)
The virtual rotation, 60 , is defined in the deformed curvilincar coordinate
system (Cj, ¢,, ¢;) because the compatibility condition associated with it, pre-

sented latter in this section, is also derived in this system. Thus, the virtual

rotation is given by

_._ Y]
00 = n/cy + n

IAI IAI
n € + 0 e (4.63)

The virtual work done on a beam element due to the distributed forces is

given by:
lo 1o

(oW )p = J- (P-du)dx = J (py Ou + Py ov + p, 6w)dx (4.64)
0 0

Expressing the distributed moment vector in terms of the (¢, 6,’,, 62) system as:

Q=q,¢ +q,¢ + q'¢ (4.65)

then the virtual work done on a beam element due to the distributed moments

is given by:

I, — L
(6We)g = (Q-00)dx = (qx'ny +q,'n," + q'n;’) dx (4.66)
Q N ) nn £
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The transformation between the components of the distributed moment vector,

Q,is:
qx' qX
qy = [Ty 1< 9y (4.67)
q 9.

After the virtual displacement, du , and the virtual rotation, 6@ , the triad
(¢, ¢;, ) of the deformed curvilinear coordinate system is rotated to a new
A

H LA AT . ve
triad (¢}, ¢z, c7) , given by:

—y

Ch= 0+ 060 xS =0 +n/¢ —n, ¢ (4.68a)
Cp = + 00 x & =& + '8 — 8y (4.68b)

S = & + 80 x & =2 (4.68¢)

n' = ¢ (4.69)

In order to determine n,” and n,’ , consider an element, dx, of the deformed
clastic axis as it goes through a virtual displacement, du ( Fig. 4.1 ). Before the
virtual displacement, the element is at position AB . After the virtual dis-

placement, the element moves to position A’B’ given by:

—_

A'B’ = (Ry+ dx¢;+ du+ dudx) — (Rg+ ou)
(4.70)
= dx (&} + du )
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where

5u,‘ =

(4.71)

e Mo~

= [bu, ov, Ow,1[Tg]"

a> 0> 6>

U £

The vector A’B’ is in the ¢7 direction, therefore, the virtual rotation compo-
neats n,” and n;” are obtained by substituting Eqs. (4.40) and (4.71) into Eq.

(4.70) and comparing with Eq. (4.68a):

n, = —[vysin(B+ @)— w cos(B+ ¢)]ou, + [sin(f+ ¢)—
(4.72a)
1. cos flov — [cos(B + @)+ 1. sin f]ow 4
n' = —[vycos(B+ @)+ w,sin(f + ¢)] ou

+ [cos(B + ¢)]ov, + [sin(B+ ¢)]ow

(4.72b)

Combining Egs. (4.67), (4.69), (4.72) and (4.40) with Eq. (4.66), the virtual
work donc on a beam element due to the distributed moments, (rSW‘,_)Q , be-

comes:

lC
(5WC)Q = J- [(qyw,x— q,vou, + (q,— qxw,x)év,x +
0 (4.73)

(Qyvx— qy) ow, + (9 + qyV 5+ qzw’x')éqb] dx

In the derivation of Eq. (4.73), the terms associated with 1.’ are order &2 higher

than the other terms in the same group, and therefore are neglected according

to the ordering scheme.
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The total virtual work donc on a beam clement, oW, , is obtained by com-
bining the virtual work due to distributed forces, Eq. (4.64), and the virtual

work due to distributed moments, Eq. (4.73), and intcgrating by parts:

IC
5Wc — J { [px — (qyw,x — qzv,x),x] ou + [Py — (qz - qxw,x)vx] ov
0

< . (4.74)
+ [p, —(ayv— qy)Jow + (g, + qQyV x+ q,W ) 0¢ }dx
+ b(W,)
where the associated boundary terms are:
lc IC
b(W,) = (qyw,x— qzv,x)éulo + (q, — qxw|x)6v .
(4.75)

lc
+ (qv 4 — qy)éwlO

The boundary terms contained in Eq. (4.75) are latter combined with the
boundary terms associated with the variations of strain energy and kinetic en-
crgy to obtain the boundary conditions associated with the cquations of mo-
tion. It is evident, from Eqs. (4.74) and (4.75), that the pretwist does not

appcar cxplicitly in the virtual work cxpressions.

4.4 SUMMARY OF THE PARTIAL DIFFERENTIAL EQUATIONS OF
MOTION

The partial differential equations of motion and the associated boundary
conditions for an clement of the beam (blade) arc obtained by substituting
substituting the variation of the strain energy, U ( Eq. (4.16) ), the variation

of the kinctic encrgy, 6T ( Eq. (4.57) ), and the virtual work of the external
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loads, W, ( Eq. (4.74) ), into Hamilton’s principle, Eq. (4.1). Since the vari-
ations of the gencralized coordinates du, v, ow, d¢, du, 6¥,,, 0¥, , are ar-
bitrary over the length of the beam clement, the partial differential equations
of motion arc obtained by requiring that the cocfficient of cach variation of a
generalized coordinate be cqual to zero. At the boundary (x =0, 1), it is re-
quired that cither a gencralized coordinate be specified (kincmatic boundary
condition) or the coefTicient of its variation be equal to zero (natural boundary
condition). Note, that if the boundary node of an element is not at the
boundary of the blade (cither root or tip); then the kinematic boundary con-
dition at this nodc, which is shared by fhis element and its ncighbor, becomes
the inter-element compatibility condition.

The seven partial differential cquations of motion are:

du equation

{ =V, + R e Z,—-py=0 (4.76a)

OV equation

{ M, sin B + M, cos f + ¢ (My cos f — M, sin f) +
Sycos B(—vysinf+w,cos f)} 4 —
(4.76b)

{ va,x —S;sinp (V xx €08 B + W 4 sin f) — Z,+ QW x— a2 } x

-Z,-p,=0
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oW equation

{ —mycosﬂ+mlsin[3+¢(M—§sin/3+m,fcosﬂ)+

Sxsinf(—vsinf+w, cosp)}, -

{ Vw4 Sqcos B (v cos B+ w, sinf)—Z, - QX x + Gy }

~Z\V—pl=0

O equation

Vxx (Mj cos f — M;sin §) + w ., (My sin B + M; cos f)

%2l

- { x+Tx¢,x},x - zd) - Qx — QyVix = 9Wx = 0
oo equation

--{Fx},x+§;+ﬁx—2a=o

0¥, equation
{Mylx + Vy + 1My, = Z, = 0

0V, equation

—{M§}|X+V{+r0ﬁé— {=O

and the associated boundary conditions are:
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(4.76d)

(4.76¢)

(4.760)

(4.76g)



lC
—qyW  +aVx } ou . =0 (4.77a)

{ Vg

{mysin[}+Vzcosﬁ+¢(m—§cosﬂ—m;sinﬂ)+

1 (4.77b)

§,’(cosﬁ(—\"sinﬁ+wxcos[)’)}é\'x ‘=0
) ) ) ' 0

{ [Mysin f + M, cos B + ¢ (M, cos f — M. sin §) +
S;cos f(— v sinf+w,cosf)], ~ (4.77¢)

— — . . = le
Vx\"x + Sy sin f (\"u cos f + W 4 Sin B+ Z,— QW x+ 4, }ov .

1l
=

{ —myc‘)sﬂ+m15inﬁ+¢(-M)'.Sinﬂ+m;cosﬁ)+

. (4.77d)

SisinB(— v, sinf+w, cosf)}ow ] =0
; , | Al

{[—Mcosf+ M, sin  + ¢(M_§sinﬁ+ﬁ;cosﬂ)+
Sysin f(— v, sinf+w,cosf)], — (4.77¢)

V,

- — ]
xW x — SxC0s B (V4 cOs B+ W, sin B)+ Zy+qyvy—qy } ow Oe =0

{Sy+ Tyb )00 .= 0 (4.771)
_ le
(P roa| =0 (4.77g)
0
— ~ lc
{ M} } 07y, . 0 (4.77h)
(M} k 0 (4.771)
! ¥ v = . 1
y F O]
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where, the stress and moment resultants have been defined in Eqs. (4.11) and
(4.12); the incrtial forces and moments are defined in Egs. (4.55). All the al-
gebraic dcrivations associated with the structural and incrtial operators which
are lengthy, have been verified using the symbolic manipulation program

MACSYMA[108].

4.5 FINITE ELEMENT DISCRETIZATION OF THE EQUATIONS OF
MOTION

The nonlincar partial differential equations of motion, and related bound-
ary conditions, which have been dcrived in the previous scction, depend on
both space and time. The spatial discretization of these equations is obtained
by using the finite clement method{105]. It is important to mention that, it is
possible to obtain the element properties, required for the finitec clement
method, without the prior explicit derivation of the equations of motion.
However, for the fairly complicated problem treated herc, and the trcatment
of the axial degree of freedom which will be discussed latter, it is convenicnt
to have the completc formulation of the problem in partial differential
equation form.

The clement properties, for a beam type finite element, can be obtained by
representing the blade as a combination of beam type finite elements, and us-
ing Hamilton’s principle on the local level to generate the element matrices and
load vector. In carrying out this discretization process, the straight portion of
the blade is divided into several elements, while the swept tip portion is mod-

eled as a single clement.
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The discretized form of Hamilton’s principle is written as:

t n
P> (6U; - 6T, - sWg)dt = 0 (4.78)

b=

In Eq. (4.78), n is the number of finite clements in the modcl, oU; is the vari-
ation of strain cnergy in the i-th clement, 6T, is the variation of kinctic energy
in the i-th clement, and dW,, is the virtual work of external loads in the i-th
clement.

Assume that the seven unknown generalized coordinates of the beam finite

clement are expressed in the following form

3T o 0 0o 0 0 0 v}
w 0 (o7 o 0 0o 0 0 [|{W}
s o 0 {37 o_. 0 0 0 (¢}
ul=] 0 o0 § @uT o. 0 o Ul @79
o 0 0 0o 0 (@37 o0._ 0 {a}
Fan 0 0 o 0 0 (@) o_|{{,)
Ve o o o o o 0 (7||tp
RS JIAKSS

where {®,},{®,}.{Ps}.{P.},{P,},{P,},{®} are space dependent interpolation
functions ; {V},{W},{¢},{U},{a}.{T’,},{I';} are time dependent nodal param-
eters of the generalized degrees of freedom v, W, ¢, u, a, ¥,,, ¥y », respectively,
for the beam element.

The variations of the generalized coordinates for the beam element are:
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(] T r

v @ ' 0. o0 0 0 0 0 {5V}
Sw 0 {o)' 0. 0 o0 0 0 |[|{eW}
5 0o 0 {®»,1' o0 ;0 0 0 {60}
sul=1 0 0o 8 @y o 0o o [|{sU}]@s0
Sa 0 0 0 0 {®3" 0. 0 {6a)
O 00 0o 0o 0 {o3" o |lr,
o¥¢ | O 0 0 0 0 ¢ (o7 || 6rp

In this study, Hermite interpolation polynomials are used to discretize the
spacc dependence. Cubic polymials arc used for the transverse deflections v
and w, with the displacements and slopes at the end nodes as the nodal pa-
rameters. Quadratic polynomials are used for the torsional rotation ¢ , the
axial dcflection u , the warping amplitude « , and the transverse shears at the
clastic axis ¥,,, ¥, ; for thesc quantitics the nodal parameters are the values of
the displaccment function at the two end nodes and at the internal node of the

clement. The mathematical expressions for the interpolation polynomials are:

[ I — 3224 23 -
I, (& — 282 + &%)

P} = 3= = {® 8
(= &2+ &)
1 — 3¢ +2¢2
(@p} =@y} = {®} = (O} = (O} = | 4r-4e? |={D}  (431b)
— &+ 282

where: ¢ = x/I, , x is the spanwise (axial) coordinate of the beam clement, and
l. is the length of the beam element. Each beam element consists of two end
nodes and one internal node at its mid-point, resulting in a total of 23 nodal

degrees of frecdom, as shown in Fig. 4.2. The quadratic polynomial has the
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capability of modeling a lincar variation of strains along the clement length,
thus being compatible with the cubic polynomial for transverse deflections.
These polynomials also satisfy all inter-clement compatibility requircments as-
sociated with the variational principlc in this formulation.

Note that when the problem is restricted to bending and shear in the verti-
cal plane, Egs. (3.43a-c) rcducc to the strain-displacement rclations of

Timoshenko beam where a constraint rclation, such as

Wy = Oy + Yx (4.82)

exists, and 8, is the rotation due to bending. In this special case the boundary
terms for dw, and 67, in the U expression will have the same cocfficient with
opposite sign, and thus can be combined into a boundary term containing only

56... This also agrees with Timoshenko beam theory and implies that w, and

v
Tx; arc not required to have inter-clement continuity[91]. For a bcam with
built-in twist, undergoing modcrate deflections in two mutually perpendicular
plancs, combined with torsion and transverse shears, the boundary terms for
dw, and &7,, have different coefficients which contain coupling terms such as
v,.¢ and f, and Eq. (4.82) is no longer valid. The corresponding variational
principle thus requires inter-clement continuity on both w, and y,; , and for
the same reason also on v, and 7,,. In the literature of Timoshenko beam fi-
nite elements, there is a group of higher order elements[68,92,93] which also
enforced inter-clement continuity on w, and ¥,, either directly or indirectly

through Eq. (82); and they produced excellent agreement with exact solutions.

For morc complex structures such as swept-tip blades, the actual behavior of
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Vxy and ¥,, at the junction of the swept tip and the straight portion of the blade
is complicated. Thercfore, the enforcement of inter-element continuity on Y

and y,, at the junction node should be treated as an assumption.

4.5.1 Element Matrices Associated with the Strain Energy Variation

The beam clement matrices associated with the strain encrgy variation are
derived by substituting the expressions for the generalized coordinates, Eq.
(4.79), and thceir variations, Eq. (4.80), into the strain encrgy variation, Eq.
(4.10). Using the intcrpolation functions given by Egs. (4.81), and carrying
out the integration over the length of the beam element; the resulting variation

of the strain energy has the form:
U = 8q" ([K"1+ [KN@)])q (4.83)
where
0 = [V Wy Uy T Ty g T 1T (4.84)

and [KL] and [K~L] are the linear stiffness matrix (symmetric) and nonlinear
stiffness matrix, respectively. Dectailed expressions for these stiffness matrices

are presented in Appendix B.1 .
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4.5.2 Element Matrices Associated with the Kinetic Energy Variation

The beam clement matrices associated with the kinetic energy variation are
obtained by substituting Eqgs. (4.79) and (4.80) into the Kinctic encrgy vari-
ation, Eq. (4.54). Using the interpolation functions given by Eqgs. (4.81), and
carrying out thc integration over the length of the beam element; the resulting

variation of the Kinctic encrgy has the form:
5T = —6q" (IM1q+[MTTa+ (K 1q+ (F}) (4.85)

where

[M] is thc mass matrix (symmetric), [M€] is a Coriolis damping matrix
(anti-symmetric), [K€F] is a centrifugal stiffening matrix (symmetric when 1)
is constant), and {FCF} is a centrifugal force vector. Detailed expressions for

[M], [M€], [K€F] and {FCF} are presented in Appendix B.2 .

4.5.3 Element Matrices Associated with the Virtual Work of External Loads
The beam clement matrices associated with the external virtual work are
derived by substituting Eqgs. (4.79) and (4.80) into the virtual work of external
loads, Eq. (4.74). Using the interpolation functions given by Egs. (4.81), and
carrying out the integration over the length of the beam element; the resulting

virtual work of external loads has the form:

sW, = —6q" ([Kq+ {F1}) (4.86)
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where [K'] is a stiffness type matrix associated with applied distributed
torqucs acting on the blade (bcam), and {F'} is an applicd force vector. De-

tailed cxpressions for [K'] and {F'} arc presented in Appendix B.3 .

4.5.4  Summary of the Becam Finite Element Equations of Motion

The finite clement cquations of motion for a single becam element are ob-
taincd by substituting the strain energy variation, Eq. (4.83), the kinctic cnergy
variation, Eq. (4.85), and the virtual work of cxternal loads, Eq. (4.86), into
the discretized form of Hamilton’s principle, Eq. (4.78). Since the variation
of the generalized coordinates (3v, 6w, 8¢, du, o, 67,,, 87,;) are arbitrary over
the timce interval, thercfore dq is also arbitrary; and this results in the finite

clement equations of motion for the i-th beam element, written as:

(M1q+[Clq+[K;]Jq+F, =0 (4.87)
where:

[M;] = [M]; (4.88)
[C] = M), (4.89)
(KD = (KY%+ [KET3 + K + k- YH@)); (4.90)
F; = {(FTL + (F); 4.91)
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The rcason for defining the clement mass, damping and stiffncss matrices
[M,1.[C].[K,] and the load vector F, is to define the notation which is sub-

sequently used in the assembly process described in Chapter 6.

4.5.5 Local-to-global Coordinate Transformation
The local-to-global coordinate transformation for the swept-tip element can

be written in the form
o = [Alq’ (4.92)

where the subscript t denotes quantities associated with the tip clement; the
superscripts L and G denote the local and global coordinate system, respec-
tively; q is the vector of element nodal degrees of freedom, defined in Eq.
(4.84). The transformation matrix, [A], is derived with the constraint that the
angular relationship between the swept-tip and the straight portion of the
blade at the junction is preserved after deformation[73]. For the translational

degrees of freedom, the transformation is linear, as indicated by:

u)L u) G
{ v} - [Teb]t{v} (4.93)
W), W),

where the transformation matrix [T,,], is given by Eq. (2.7b):
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[ cosA; —sinAg g cos A, 0 sinA,

[TeoJi = | sinAy  cosA{ 0 0 1 0
0 0 1 —sinA, 0 cosA,

-

_ (4.94)
cos Agcos A,  — sin A, cos Agsin A,

= | sinAgcos A, cos A sin Agsin A,

—sin A, 0 cos A,

The transformation for the warping and transverse shear degrees of freedom

is also lincar:

(@) = cos A cos A, (@)° (4.95)
- L _ G
Fap)y, = oS A, (V) (4.96)
- L - G : . _ G
Gy, = cos A, (Fyr), — sin Agsin A,y (), (4.97)

However, the transformation corresponding to the rotational degrees of free-
dom of the junction node, derived below, is nonlinear due to moderate
rotation[73].

The transformation between the (€, €, &) system and the (¢, e,, €,) system
is:

For the straight portion of the blade (global system)

A, A

ex ex

A, A

€y = [Tgelg < & (4.98)
A, A

e G e G

For the swept tip element (local system)
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A, A

cx ex

A, A

Cn = [ TdC ]L cy (4.99)
A, A

C L € L.

~N

The transformation between the local and global coordinate systems before

dceformation is:

0> 0>

A

€
y o = [T {8 (4.100)
L e

o>

z

The constraint that the angular rclationship between the swept tip and the
straight portion of the blade at the junction is preserved after deformation can

be written as:

A, Y}

cx ex

A' AI

en = [ ch ]! er’ (4.101)
A, n,

ec L € G

Combining Eqgs. (4.98) and (4.100) with Eq. (4.101) and comparing with Eq.

(4.99) gives:

[Toedp = [Tep L Tae g [ Tep It (4.102)

If the gencral second order expression of [T4] , Eq. (4.40), is used, an ex-
plicit form of the constraint relations for the rotational degrees of freedom
cannot be obtained because of the mathematical complexity. When the effect

of pretwist at the junction is not included, the matrix [T,] becomes
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1 Vv x Wy
[Tgl=| " Gxtowy | ¢ (4.103)
—Wet v, — (P+v, Wy |
where the small angle assumption, Eq. (3.39), is used for ¢. Substituting Eq.
(4.103) into Eq. (4.102) and cquating elements (1,2), (1,3) and (2,3) of both

sides, yiclds the following constraint relations:

d)l, ¢G

L { G
—wy > = ([T L +[TRD) - w; (4.104)

\,l, VG

E

X ’

where the clements of the matrix [TX] are presented in Appendix C.1. For the
velocity and acceleration of the rotational degrees of freedom, the constraint

relations are obtained by differentiating Eq. (4.104) with respect to time:

e ¢°
_wk - ([ch]t.,_[TC]) ——W,Gx (4.105)
v W
b $¢ ¢7
—Wh b = ([T h+ (TN -G 5 + [TMI-wG 5 (4.106)
where
[(TM1 =171 (4.107)

The elements of the matrices [T€] and [TM] are also presented in Appendix

C.1. It is evident from Appendix C.I that the transformation matrices
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[TX], [T€] and [T™] arc nonlincar in the generalized coordinates or their de-
rivatives. If the pretwist angle at the junction, §;, is nonzcro but it can be
approximated as of ordcr ¢, instcad of ¢'/2 , then the matrix [Tq] , Eq. (4.40)

can be written as:

] Vv x Wy
[Tyl =| " Vx—B+o, l B+ ¢ (4.108)
Wi+ BV, — B+é+v, Wy 1
where the small angle assumption is used for both f and ¢. This form of Eq.
(4.108) is cssential in order to be able to derive transformation of the type
given in Egs. (4.104)-(4.106). Furthermore, it is also important to notc that
assuming the pretwist angle at the blade tip junction to be of order ¢ is very
rcasonable. In practical blade configurations most of the pretwist is in the in-
board scction, and the outermost 10% portion of the blade has only small
amount of pretwist. Using an approach similar to the case when ;=0 (see
above), a sct of constraint relations can be obtained which has the same form
as that given in Eqgs. (4.104), (4.105), (4.106) and in Appendix C.1, cxcept that

the variable ¢ is replaced by @, where

¢ =p+ ¢ (4.109)

The local-to-global coordinate transformation, for the vector of nodal de-

grees of freedom, Eq. (4.92), can be rewritten as:
. G
a = ([AM1+ A% g (4.110)

where [AL] and [AK] are the linear and nonlinear parts of the transformation

matrix [A], respectively. The nodal vectors for velocity and acceleration are:
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a = (AL +1AC7)4C 4.111)

= ([A"1+1A%)4C + (AM14C (4.112)

Equations (4.110)-(4.112) arc employed in the assembly process, which is de-
scribed in Chapter 6. In Eqs. (4.110)-(4.112), the matrices [AX], [A€] and
[AM] arc nonlincar in the nodal value of the generalized coordinates or their
derivatives at the tip juntion. The clements of the matrices [ALY] , [AK] ,

[A€] and [AM] arc presented in Appendix C.2.
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Chapter V
INCORPORATION OF AERODYNAMICS IN THE EQUATIONS OF
MOTION
In the equations of motion given in Chapter 4, the nonconservative distrib-
uted forces and moments associated with the external work contributions were
written in general symbolic form. These generalized forces and moments are
replaced by the acrodynamic forces and moments described in this chapter to
complete the aeroelastic analysis. The expressions used in the derivation of the
acrodynamic loads in this chapter are not combined algcbraically. Instead,
they are coded separately in the computer program implementing this study,
and assembled numecrically during the solution process[13]. Since the explicit
algebraic form of the aerodynamic loads as a function of the blade displace-
ment variables is not required in this implicit aerodynamic formulation, there-

fore the ordering scheme is not used in this chapter.

5.1 AERODYNAMIC LIFT AND PITCHING MOMENT

The cxpressions used for the aerodynamic lift and pitching moment acting
on the blade are based on Greenberg’s extension of Theodorsen’s theory [38]
for a two-dimensional airfoil undergoing sinusoidal motion in pulsating
incompressible flow. A quasi-stcady approximation of the unsteady theory is
used where Theodorsen'’s lift deficiency function C(k) is taken to be unity. This

approximation is quite reasonable because it was shown in an earlier
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paper[33] that a completcly unstcady time domain representation of
Greenberg's theory has a fairly small cffect on the coupled flap-lag-torsional
blade response, stability and loads. Thus the neglect of this particular un-
steady acrodynamic cffect is not expected to have a significant influence on the
validity of the numerical results generated in this study. With the quasi-stcady

assumption, the acrodynamic lift L and pitching moment M per unit span are

given by:
L = Lap b2 (h + V) — (x4 — Lb)67] +
2 dt 2 5.0)
apAbV[h + VO + (b — x,) 6]
12 [, d e
M = Fapb{(xy = 5-0) <= (B + V6) - S-bVo -
[07 + (xp — 5016} (52)

+ apabxaVIh + VO + (b~ x,) 8]

where a is the two-dimensional airfoil lift curve slope; b is the semi-chord; p,
is the density of air; h is the plunging velocity; V is the frce-strcam vclocity
component of the two-dimensional airfoil; 8 is the pitch angle with respect to
free-strcam; x, is the blade airfoil cross-sectional aerodynamic center offset
from the clastic axis, positive for acrodynamic center before elastic axis. The
acrodynamic lift L is defined positive up and the pitching moment M is de-
fined positive nose up.

The resultant airfoil velocity relative to the air is:

Ug = VV2+h? (5.3)
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The components of Uy in the deformed curvilinear coordinate system

A

, ¢) are, from Fig. 5.1:

’

(. c

U, = Vcos 8 — hsin6 (5.4a)

U/ = — Vsinf— h cos 6 (5.4b)
Inverse relations corresponding to Eqgs. (5.4) can be also written as:

V = Un’ cos 8 — UC' sin 6 (5.5)

h = — U, sin 0 — U,’ cos 0 (5.6)

Duc to the small oscillation assumption, which is an inherent assumption in
Greenberg's theory [38], the expressions for (h 4+ V@) and V in Eqgs. (5.1) and

(3.2) can be approximated, from Egs. (5.4b) and (5.5), respectively, as:
h+ Ve~ — U,/ (5.7)
V>~ U’?, - UC’B (58)

Substituting Egs. (5.7) and (5.8) into Egs. (5.1) and (5.2), the aecrodynamic lift

and pitching moment per unit span arc written in terms of U,” and U;’ as:

1 2 W R
L = TapAb [— Ui —(x‘,\——z—b)ﬂ] +
- (5.9)

apab (U, — U 8) [ — U + (b~ Xa) 01
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— 1 2000 l R I ’ ’ '
M = —73pAb {(\A—?b)UC +?b(U’7 _UC 0)9+

A2y o295 5.10
(0" + (xa 50)71 0} (5.10)

+ appAbXA (U = U8) [ — Uy + (b —x,) 6]
The profile drag per unit span is:

.
D = CypabUi = Cypab(U, >+ U, (5.11)

5.2 BLADE VELOCITY RELATIVE TO AIR

The velocity vector of a point on the clastic axis of the blade relative to the

air is;

U= Vgy — Va=Ul% + Ue + Uy e (5.12)

where Vi, is the velocity vector of a point on the clastic axis of the blade and
V4 is the velocity vector of air due to forward flight and inflow.
The velocity vector of a point on the clastic axis of thc blade, V., , can be

obtaincd from Eq. (4.47) as:

Vea = (Voo = V08 + VARG, + VIAE, (5.13)
where
vEA 0+ Qu(h, +w)—Q, (h,+Vv)+ V
X y\Hz z Uy bx
v§,>f\ = {VHQ,(he+ X+ u) - Q, (h, + W)+ Vi, (5.14)
vEA w+Q (hy+v)-Q (h, + x+u)+ Vy,



The velocity vector of air duc to forward flight and inflow, V4, is:

N . N N
Vo = QR (ucosy i — p siny j, — 4Kk,)

(5.13)
AN AN AA
= chx+ Vycy+ vV, ¢,
where
A
Vx\ [ COS Y
Ve p = QR[T,] [Ty ] § — usiny
V/\ - A
z (5.16)

1 COS Y — ﬁpl

= QR[T 4]l — ;z[fp cos ¥ sin 6p — psin  cos HP — Asin 0p

— uﬁ'p Cos Y cos Bp + psin ¢ sin Gp — Acos Bp
In Egs. (5.14) and (5.16), the explicit expressions for (€2,, 2, Q,), (h,,h,, h,),
(Vixr Viys Vi) and [Te,] can be found in Egs. (4.33), (4.38), (4.26) and (2.7a),
respectively, for the straight portion of the blade, and in Eqs. (4.34), (4.39),

(4.27) and (2.7Db), respectively, for the swept-tip clement.

The velocity component U,” and U’ can be obtained by combining Egs.

(5.12), (5.13) and (5.153) as:

U/ vEA_yA
Uy > = [Tgl§ Vit = Vi (5.17)
U,’ EA A

¢ vz - Vz

where the transformation matrix, [T4] , between the deformed curvilinear

. A A .
coordinate system (c,, é,;,eg) and the undeformed element coordinatc system
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(¢, Cy. ¢,) , has been defined in Eq. (2.15) and the second order cxpression for
[Ty] is given by Eq. (4.40).
The acceleration component Uc’ can bc obtained by diffcrentiating Eq.

(3.17) with respect to time:

) SEA A EA A
px V)g - Vx Vx - Vx
Uy = [Tgd V= VA S + [Tl vyt - vi (5.18)
0 VA VEA -2
where
v;ff‘ i+ QW — Qv+ Q (h, + W) — Q, (h, + V) + Vp,
Vit = SV Q0 - Qv +Q, (h+ X+ u)— @ (h, + W)+ Vi, 3 (5.19)
V,“ W+ QU - Qo+ Qy (hy + V) = Q (hy + X+ u) + Vy,
— Qusin ¢
vA
. ;‘\ {Qu (B, sin ¢ sin 0 —cos y cos 6.)
Vi ¢ = QR[Tg] (uﬁ cos cfcos bp— u Kin Y sin 6 + 5 cos éJ (5.20)
oA
Ve {Qu (B, sin y cos 05 + cos ¥ sin 6)
(/,z[ip cos nﬁ sin 0 +u Sin Y cos 0 + ﬁ sin 6(:))}_J

The matrix [T] is given in Eq. (4.43); while the expressions of (Vy,, Vy,, Vi)
and (Q,,Q,,Q,) are given in Egs. (4.52) and (4.53), respectively. Equations
(5.19) and (5.20) are obtained by differentiating Eqs. (5.14) and (5.16), re-

spectively, with respect to time.
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5.3 BLADE PITCH ANGLE WITH RESPECT TO FREE STREAM

The blade pitch angle with respect to the free stream is:

0 =0+ ¢

(5.21)

where 6 is the total gecometric pitch angle. The time derivatives of 6 are:

6 =0+ ¢

6 =0+ ¢
For the straight portion of the blade

6G = 0,(¥) + B(x)

9G=9p
é(;:ép

For the swept-tip element

0 = [6p(¥)+ Bylcos Agcos A, + BT (X)
BG = 9p cos Agcos A,

0 = ép cos Agcos A,

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

where f, is the blade pretwist angle at the junction between the straight por-

tion of the blade and the swept tip, and B (x) is the pretwist angle of the swept

tip with respect to the junction.
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5.4 AERODYNAMIC FORCES AND MOMENTS IN THE
UNDEFORMED ELEMENT COORDINATE SYSTEM

The components of the acrodynamic forces and moments per unit span in
pye . A A A
the deformed curvilincar coordinate system (e, ¢,. €;) are rclated to the aero-

dynamic lift and pitching moment per unit span by (sec Fig. 5.2):

p,’ = Lsinay — Dcosay (5.30)
p’:' = LCOS(ZA + Dsin aa (53')
q, = M (5.32)

where the bladc local angle of attack, «,, and its sinc and cosine can be written

in terms of U,’ and U, (sce Fig. 5.1) as:

1 U
XA = — tan —lj_' (533)
n
U/ - U/
u,’ u,’
cosay = U" = 1 (5.35)
R

1112 )
VU U

The acrodynamic forces and moments per unit span in the undeformed cle-
ment coordinate system (c,, f:),, Gz) arc obtained from Eqs. (5.30), (5.31) and

(5.32); and can be written as:
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Pyd = [Tgd' < Pr (5.36)
Py Pt
qx . qx'
Gy b = [Tdcjr{ 0 } (5.37)
q, 0

5.5 TREATMENT OF REVERSE FLOW

Reverse flow is a phenomenon due to forward flight[52] and it is charac-
terized by the cxistence of a reverse flow region on the retreating blade (
180° < ¢ < 360°), where the relative air velocity sensed by the blade cross-
scction is from the trailing edge to the leading edge. At the boundary of the
reverse flow rcgion, the tangential velocity of the blade with respect to air is
cqual to zero. It should be noted that an exact solution of the boundary of the
reverse flow region requires knowledge of the blade motion, which is not
known a-priori. A commonly used approximate solution for the boundary of
the rcverse flow region is obtained[52] by neglecting the blade deformations;

i.c.:

Qr+ uQRsiny =0

or

r=— uRsin ¥ (5.38)

which represents a circle of diameter uR, and centered at r= uR/2 on the

Y = 270° azimuth station of the retreating side of the rotor disk, as shown in
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Fig. 5.3. Since the diameter of the reverse flow region is directly proportional
to the advance ratio, y, the size of the reverse flow region increases with the
forward spced.

In this study, it is assumed that the acrodynamic lift and moment per unit
span arc cqual to zcro, while the sign of the profile drag per unit span is re-
versed inside the reverse flow region. The reverse flow region can have an in-
fluence on rotor acrodynamic loads at high advance ratios and it should be

taken into account in the calculation of the aerodynamic loads.
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Chapter VI

METHOD OF SOLUTION

The finite clement discretization of the blade equations of motion has been
described in Chapter 4. This chapter describes the treatment of the blade axial
degree of freedom. This is an important step required for thc appropriate
representation of the centrifugal force and Coriolis damping cffects, before the
blade cquations of motion can be solved. Subsequently, the various solution
procedures nceded for determining the acroclastic stability in hover, as well as

the response and stability in forward flight are described.

6.1 TREATMENT OF THE AXIAL DEGREE OF FREEDOM

A careful treatment of the blade axial degree of freedom is required so as
to properly account for the centrifugal force and Coriolis damping effects. In
the past, two basic approaches have emerged for the treatment of this problem:
(1) the climination approach and (2) the substitution approach. The elimi-

nation approach aims at eliminating the axial degree of freedom from the blade

equations of motion. Historically, this has been done through mathematical
manipulations[41,83,12] described below. The blade axial equation of motion,

derived previously, is given by:

{= Vit qWy—qV)x— Z,—ps=0 (4.76a)
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where the axial stress resultant Vx is written, from Eq. (4.114a). as

<|
1]

=[] @uewt Qusrg + Qugrp ana:
A (6.1)
= EAfu, + —l—(vvx)2 + %(w’x)z] +f

where f represents the additional terms which do not depend on the axial de-
gree of freedom, u. The axial component of the distributed inertia force, Zu ,
is given in Eq. (4.55a). In Eq. (4.76a), the distributed external force and mo-
mcnt terms py, q, and q, arc often ncglected.  Using three equations, Egs.
(4.76a), (6.1) and (4.55a), the elimination procedure is carricd out in two
stages. In the first stage , a new cxpression for the axial strain at the clastic
axis in terms of the axial inertia force is obtained after somc mathematical

manipulation. Rewrite Eq. (6.1) as

S (6.2)

|
u,+ % (v'x)2 + 5 (w‘x)2 =

where the term on the left hand side of Eq. (6.2) is, from Eq. (3.31), the axial
strain at the clastic axis, £,,. The axial stress resultant V, is also thc total axial
force on the blade duc to incrtial and cxternal loads at the spanwisce station x
of the blade element, and can be calculated by integrating Eq. (4.76a), while

ncglecting the distributed cxternal force and moment terms

—_— le_ ~
vx=f Zdx + V, (6.3)
X
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where {/x is the total incrtial force in the axial direction due to the portion of
the blade outboard of the element. Combining Eqgs. (6.2) and (6.3), the new

expression for the axial strain at the clastic axis is given by

— P2, 1 2
£y = U .+?(\’x) +?(w’x) =F (6.4)

XX WX

where
L (PZ dx+ V, — ) (6.5)
= X+ - .
EA < u X

Using Eqs. (6.4) and (6.5), all the terms involving ,, in flap, lag and torsion
cquations arc replaced by the function F, which is equivalent to thec proper
representation of the centrifugal force cffects in these equations.

In the sccond stage , terms involving u and its time derivatives are climi-
nated from the flap, lag and torsion cquations. Integrating Eq. (6.4) with re-
spect to x yields

_ de' xl ,2 2 d 66
u= X — —i—(\’x+w’x) X (6.6)
0 0

This cxpression for u, Eq. (6.6), and its time derivatives arc then used to re-
place the corresponding terms in the flap, lag and torsion equations. The
Coriolis damping effect is retained in this process of eliminating u and its time
derivatives. It is worthwhile mentioning that in the past, additional simplifi-
cation was often introduced in the second stage by imposing the axial
incxtensionality condition; which is equivalent to the requirement g,, =0, in

Eq. (6.4), and it also implies that F =0, in Eq. (6.6). In the two-stage climi-
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nation process described above, the axial degree of freedom is completely
climinated from the system of cquations. Subsequently these modified system
of cquations, with reduccd degrees of frecdom, can be used in thé acroclastic
analysis. Such an climination procedure becomes algebraically tedious in the
casc of composite blade model or when higher order terms are retained in the
blade modcl[15].

The substitution approach , which is used in this study, has also been em-

ployed by Chopra and his associates since the mid 80’s (c.g., Ref. 48). It re-
presents a somewhat morce general alternative to climination. In this approach,
Eqs. (6.4) and (6.5) are used to substitute for the axial strain at the clastic axis
so as to properly account for the centrifugal force effects. However, both the
axial dcgree of frecdom u and the axial equation of motion arc retained in the
acroclastic calculations. In the nonlinear equilibrium position calculation, the
nonlincar terms cncountered in the substitution procedure are treated as
known quantitics and arc substituted using the approximate solution from the
previous iteration.  For lincarized stability analysis, these nonlinear terms are
substituted using the converged equilibrium values. It is important to note
that when using the substitution procedure in an aeroclastic analysis, the
modal coordinate transformation should include an axial mode in order to
properly account for the Coriolis damping effect. Without this axial mode, the
flap and lag damping obtained from the linearized stability analysis can be
inaccurate at high pitch angles, as will be shown latter in this study. A more
concise description of the approaches for the treatment of the axial degree of

frcedom, presented in this section, has been included in Ref. 104.
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6.2 FREE VIBRATION ANALYSIS

The first step in the solution procedure is the calculation of the natural fre-
quencics and mode shapes of the blade. The coupled equations of motion re-
presenting the free vibrations of the rotating composite blade are a set of
nonlincar ordinary differcntial cquations obtained from the finite clement
discretization described in Chapter 4. These nonlinear equations of motion are
converted into a sct of lincar cquations by replacing the nonlincar terms asso-
ciated with the axial strain at the elastic axis by a linear term rcpresenting the
inertial force in the axial direction, and ncglecting all other nonlincar terms
associated with the substitution procedure described in the previous section.
The computation of the natural frequencies and mode shapes of the blade is
based on the linear, undamped equations of motion of the blade in vacuum.
The cquations of motion for the typical element used to model the straight

portion of the blade are:
Iy .. F .
[Mi]qi+[Ki]qi=0, i=1,.,n—1 (6.7)
and for the swept tip clement, the cquations of motion arc given by
(AN IMIAM 6 + (AMTIK A P = 0 (6:8)

where the linear transformation matrix [Al] is used in the local-to-global co-
ordinate transformation.
The n — | equations, Eq. (6.7), and Eq. (6.8) are then assembled using the

standard finite clement assembly procedure. The assembled finite element

cquations of motion for the free vibrations of the blade are written as
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(M4 + [(KF1q =0 (6.9)

In Eqgs. (6.7)-(6.9). the superscript F denotes matrices used in the free vibration
analysis. The boundary conditions at the root are imposed by dcleting the
appropriatc rows and columns of the system mass and stiffness matrices that
corrcspond to the constrained degrees of freedom at the blade root.

For the bascline configuration of the blade, the free vibration modes are
calculated with zero pitch angle. In an acroelastic analysis where a modal co-
ordinate transformation is usced to reduce the number of degrees of frecdom,
the free vibration modes of the blade are calculated for a root pitch angle that
corresponds to the collective pitch sctting of the blade. The coupled modes of
the blade are identified using a procedure[11] which is described next. The
cigenvector representing the mode shape of a particular mode is normalized
by dividing it by the largest tip displacement among its seven component
modes. The identification of the mode is based on the component mode with
the largest participation in the tip displacement, i.e., having a normalized tip

displacement of one.

6.3 MODAL COORDINATE TRANSFORMATION AND ASSEMBLY
PROCEDURE

A preliminary step in the solution of the aeroelastic response and stability
in hover and in forward flight consists of a modal coordinate transformation
performed on the blade equations so as to reduce the number of degrees of

freedom of the problem, and to assemble the various element matrices into
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global system mass, damping and stiffness matrices and generate the system
load vector. For the i-th clement, the modal coordinate transformation has the

form:
q; = [Q;]y (6.10)

where y is the vector of gencralized modal coordinates, which become the new
unknowns of the problem. If N, modcs are used to perform the modal coor-
dinate transformation, then y is a vector of size N, . The transformation ma-
trix [Q,] for the i-th clement has a size of 23 by N; the columns of [Q,]
contain the portions of the normal mode cigenvectors corresponding to the
modal degrees of freedom for the i-th element.

The asscmbled stiffness matrix of the blade is obtained by summing the
stiffness matrices of the individual clements after the modal coordinate trans-

formation has been performed on cach of these elements:
n—1 B , ,

(K] = Y [Q1'IKJIIQT + [QI'TAMTIKICA T+ AR DIQY  (6.11)
1=1

Similarly, the assembled damping and mass matrices are written, respectively,

as:

n—1
[C] = ) [QI[CIQ +
i=1 (6.12)

(1 tal T rc Al + 1A + iMataMiQ]

n—1
M] = Y [QIIMIIQ] + [QJ'TAM IMITAM + A DQ]  (6.13)
=1
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and the assembled load vector is given by:

n—| ) ]
F= > [Q1'F + [Q1'AM"F, (6.14)

1=1

In Eqs. (6.11), (6.12) and (6.13), the local-to-global transformations for the
swept tip element, Egs. (4.110), (4.111) and (4.112) have been applicd before
implcmenting the modal transformation.

The assembled blade equations of motion in the modal space arc a set of

nonlinear, coupled, ordinary differential equations written as:

M)y + [Cy,. 9]y + [Ky, 9.9y + F(y,y,5) = 0 (6.15)

For the casc of forward flight, these cquations also have periodic cocfficients.
In Eq. (6.15) the nonlinearity of the mass and damping matrices comes from
the local-to-global transformation associated with the swept tip element. The
dependence of the stiffness matrix on y and ¥, on the other hand, is due to the

substitution procedure in the treatment of the axial degree of frcedom.

6.4 HOVER ANALYSIS

For the case of hover, the nonlinear equations of motion, Eq. (6.15), have
constant cocfficients. The blade static equilibrium position, Yo, is obtained
from Eq. (6.15) by sctting y = y = 0 and solving the resulting nonlinear alge-

braic cquations:

[K(yp. 0,0)]yy + F(yg,0,0) = 0 (6.16)
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using a Newton-Raphson iteration procedure.
In this study, the blade response analysis is coupled with the calculation of
the trim variables such that the overall equilibrium of the helicopter is main-

tained:

Cr = Cy (6.17)

The trim variables in hover consist of the collective pitch angle 8, and the in-
flow ratio A. A bricf description of the coupled trim-aeroclastic response sol-
ution process is given below. At the beginning of the analysis, an initial
estimate of the cquilibrium position y, and the trim variables is assumed. The
approximate solution of Eq. (6.16), ¥, , is obtained while keeping the estimated
trim variables constant. The error in the collective pitch angle is calculated
from

Cw-Cr

aCr
a6,

where C; is the thrust coefficient corresponding to the approximate equilib-
rium solution y,. Details of the calculation of the thrust coefficient will be
described latter in this chapter. The derivative of C; with respect to 6, is ap-

proximated by

9C1 _ a (6.19)

00, 6

which is based on the approximate relation
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6 e
an 0.75
Cp = 5 ( ;

A
- = 6.20
> ) (6.20)
obtained from the blade element theory[32], where

0p75 = 0y + (B + D)5 (6.21)

is the total pitch angle at the 3,4 span of the blade. The absolute value of
Af, is compared with its convergence criterion; where a valuc of 0.0001 radian
is used as the convergence criterion in this study. If convergence is not

achicved, then a new estimate of the collective pitch is calculated from:

(Oo)ncw = (60)old + A60 (6.22)

Corresponding to the new pitch angle, a new cstimate of the inflow ratio is also

~ [ 240
Dpew = ;TG_( 1+ ———“32'75 -1 > (6.23)

obtained from

where

50.75 = (50)ncw + (B+ 5)0.75 (6.24)

is the total pitch angle at the 3/4 span of the blade based on the current ap-
proximation of equilibrium position, y, . Equation (6.23) is based on the cx-
tcnded blade clement theory[52].  With (éo)new, (1)new and y, as thc new
estimate of 6, , A and y,, respectively, for the next solution pass, the process
described above is repeated until this fairly simple coupled trim-acroelastic re-

sponse problem converges, to produce final converged values for 8y, A and y,.
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The blade equations of motion in the modal space, Eq. (6.15), can be writ-

ten as:

f(y,y,59)=10 (6.25)

For the hover case, Eq. (6.25) can be lincarized about the nonlinear static

equilibrium position Yy, to yield:

f = [M(yplAy + [C(ypJay + [K(yg)lAy + HO.T. = 0 (6.26)

where

I

[M] = % (6.27)
Loyl o

[C] = g—‘ (6.28)
Lav] o

K] = g—f (6.29)
Loyl 4o

arc the mass, damping and stiffness matrices, respectively, of the lincarized
system. In the linearization process, the generalized modal coordinate vector

y has been written as

y =Y + Ay (6.30)

where Ay is a time dependent small perturbation vector of y; and the fact that
f(y,, 0, 0) = 0 has been used. Neglecting the higher order terms, the linearized

system, Eq. (6.26), can be expressed in the first order state variable form by

i=[A]z (6.31)
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where the state vector z is defined as

z = {g} (6.32)
and the system matrix [A] has the form
[0] [1]
Al = — — —_— = 6.33
(A [— [MI™'[K] - [M] l[C]J (39

The lincarized stability of the system is determined by the cigenvalues of [A].

These cigenvalues are in complex conjugate pairs

(6.34)

The blade is stablc if {; < 0 for all j.

6.5 FORWARD FLIGHT ANALYSIS
In forward flight the nonlinear equations of motion of the isolated blade are

periodic and can be written symbolically as

fo(Yor Yoo Yo Y3 ¥) = O (6.35)

where y, is the vector of generalized blade degrees of frecdom. The vector Y.
in Eq. (6.35) contains the parameters governing the trim state of the helicopter,
including the collective pitch angle 8, the cyclic cosine pitch input 8,, , the
cyclic sine pitch input 6, , the i.nﬂow ratio A, and the rotor angle of attack

ag; thus the vector y, is given by

Y = [00,01c, 014, 051" (6.36)
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These five trim variables appear cxplicitly in the blade equations of motion.
Obviously the blade equations cannot be solved without knowledge of the trim
state represented by Eq. (6.36), because the aeroclastic problem in forward
flight is inherently coupled to the flight mechanics of the helicopter as repres-
ented by trim. The trim vector y, is obtained from the solution of a sct of

nonlincar trim equations

(Yo Yoo Yo Y V) = 0 (6.37)

which arc based on the overall force and moment equilibrium of the helicopter
in stcady, level forward flight. The procedurc used to determine the trim state

of the helicopter is referred to as the “trim analysis”.

6.5.1  Trim Analysis

The trim analysis employed in this study is called “propulsive trim"[24],
which enforces longitudinal and vertical force equilibrium, as well as pitch and
roll moment equilibrium of the helicopter in steady, level flight. A helicopter
(Fig. 6.1) in free flight has a total of six degrees of freedom, including three
translational and three rotational. Therefore three force and three moment
equilibrium cquations have to be satisfied in order to maintain the overall
cquilibrium of the helicopter. For simplified propulsive trim employed here,
the vawing moment equilibrium and the lateral force equilibrium are not en-
forced; thus the tail rotor pitch setting and the main rotor shaft angle in the

lateral plane are not included in the vector of trim variables given in Eq. (6.36).
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This implics that onc assumes that the yawing moment equilibrium and the

lateral force cquilibrium are satisficd.

The four cquilibrium cquations, togcther with an inflow equation, constitute

a total of five trim cquations which must be solved for the five trim variables

defined in Eq. (6.36). These trim cquations are collectively represented in a

vector form by Eq. (6.37). The cquilibrium cquations arc formulated in the

A A A
nonrotating, hub-fixed system (i, jur, ko) With the hub center O,; as the mo-

ment center for moment equilibrium cquations, as shown schematically in Fig.

6.2.

The five trim cquations are:

1.

The inflow equation. This equation governs the relation bctween the

inflow ratio 4 , advance ratio g, rotor angle of attack oy and thrust co-

cfficicnt Cy, based on thc momentum theory[52]:

C
f(1) = 4 — ptan(ag) — ——— = 0 (6.38)
2\/12 + uz
The thrust cocfficicnt is defined as:
T
Cr = S (6.39)
pa (TR7)(QR)

where Ty is the total thrust generated by the rotor.

The pitching moment equation. This equation is obtained by enforcing

pitching moment cquilibrium about the hub center. Summing the
pitching moments due to hub loads, helicopter weight and fuselage drag

gives (see Fig. 6.2):

141



My + W(— Xpccosag + Zgcsin ag)
(6.40)
+ Df(XFA sin oR — ZFA cos aR) =0

where M, is the pitching moment due to hub loads; W is the weight of
the helicopter; Dy is the parasite drag of the fusclage. The weight W
acts at the center of gravity of the helicopter, offset from the hub center
O,, by the distances X and Z in the —?n, and — 12,,, dircctions, re-
spectively, as shown in Fig. 6.2. The parasite drag D; acting on the

fusclage is given by[52]:

I
Df = > AVE fCys (6.41)

where Vg is the forward flight spced with respect to the air; and fCy is
the parasite drag area. Thc typical value of the parasitc drag area is
approximately fCy ~ 0.017R2 . The velocity vector V. of the helicopter

with respect to the air can be written as:
A : A
Vg = Vgcosag i, — VEgsinag k. (6.42)

It is assumed that the drag force Dy acts parallel to V., at the center of
drag, which is offset from the hub center Oy by the distances Xg, and
Zy, in the /i\m and — lAcn, directions, respectively, as shown in Fig. 6.2.

Nondimensionalizing Eq. (6.40) by the factor p,(nR2XQR)’R yields:

ft(Z) = —Mpt + Cw( - XFC Cosap + ZFC sin aR)
B _ (6.43)
+ CDf(XFASin [ZR—ZFACOS aR) =0

where
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M

— pt
M, = L (6.44)
pPA(TR)(QR)"R
W
Cy = S (6.45)
pa(RY(@QR)
D¢
Cpp = S (6.46)
pA (1R?)(QR)
_ Xp: _ Zic
Xic = &= Zrc= &= (6.47)
_ X _ Zr
XrA = };A , Zpa = _};A (6.48)

Substituting Eq. (6.41) into Eq. (6.46), the nondimcnsional parasite

drag cocfficient C can be written as:

1 2
5 PAVifCyp

2 1 o\ fCy
Cpr = = —( o5 > ( ) (6.49)
pA@RY)@QRY 2 NP/ \ 4R?

where fCyf(nR?) ~ 0.01.

The rolling moment equation. Since the tail rotor and the main rotor

tilt angle in the latcral planc are not modeled, the rolling moment
cquation is-obtained by simply setting the rolling moment due to hub

loads cqual to zero:

f(3) = My =M, =0 (6.50)

where
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n

Mrl

= (6.51)
pa(TR)(QR)*R

2|

The vertical force cquation. This equation is obtained by enforcing the

force equilibrium in the IA(,,, direction (see Fig. 6.2):

Tp — Wcosap — Dygsinag = 0 (6.52)

Nondimensionalizing Eq. (6.52) by the factor p (7R2XQR})? yiclds:

fl(4) = CT - C\v COS (XR - CDfsin (ZR =0 (653)

The longitudinal force cquation. This equation is obtained by cnforcing

the force cquilibrium in the Ainr direction (see Fig. 6.2):

Hr — Wsinag + Dgcosag = 0 (6.54)

where Hp is the total longitudinal hub force. Nondimensionalizing Eq.

(6.54) by pA(TRZ(QRY yiclds:

ft(S) = CH - C\V sin xR + CDfCOS R = 0 (655)
where
H
Cy = 2“ 5 (6.56)
pa (TR (QR)
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6.5.2 Distributed Loads on the blade
The distributed loads on the blade are due to inertial and aerodynamic

sources described below.

6.5.2.1 Inertial Loads
The inertial loads on the blade are derived using the variation of the Kinetic

energy cxpression shown in Eq. (4.54):

lc P —_— —_— — —
0T = J. [Zy0u + Zyov + Ziov, + Z, 6w + Z, 0w,
0 (4.54)

+ Zy0¢ + Z, 60 + Z, 07y, + Z 67y ] dx
The expression inside the brackets in Eq. (4.54) is the virtual work done by the
distributed incrtial loads on the blade. The quantities du, §v and dw are vir-
tual displacements in the €,, €, and ¢, directions, respectively, therefore Z,, Z,
and Z,, represent inertial forces per unit span in the &, ¢, and ¢, directions,
respectively. Similarly, Z; and Z,, are inertial moments per unit span in the
¢, and — Gy directions, respectively, since dv, and dw, are the corresponding
virtual rotations. The virtual rotations §¢, 07, and 07, are in the e, — 32 and
¢, directions, respectively; thus Z4,Z, and Z, are inertial moments per unit
span in the ¢}, — ¢/ and ¢, directions, respectively. Note that the orientations
of 67,, and 67,, are obtained from Egs. (3.10b-c) which define the base vectors
E, and E, of the deformed elastic axis. The inertial loads due to warping are

assumed to be small and are neglected in the calculation of blade root and hub
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loads. Similar assumption regarding the inertial warping loads has been used
by other researchers (c.g., Ref. 22).

The distributed incrtial force vector at a point on the blade is written as:
f = fqC + fuCy + fz1€, (6.57)

where the components of f; in the (C,, éy, ¢,) system are obtained from

fxl _Z_u
furp = g\, (6.58)
fl] Zw

The distributed incrtial moment vector at a point on the blade is written as:
A A A
mp = m,j€ + mye, + My e, (6.59)

where the components of m; in the (€, éy, €,) system are obtained from

My Q_ , T Ed)
myl = —_Zw + [Tde] ZC (6.60)
m,j Z _ z"

6.5.2.2 Aerodynamic Loads
The distributed acrodynamic force and moment vectors at a point on the

blade are written as:
A N N
fo = Pxex + Pyey + Pz€; (6.61)

and
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my = & + ;8 + q,¢, (6.62)

, respectively, where the components of f, and m, in the (¢,, f:y, ¢,) system are

obtaincd from Egs. (5.36) and (5.37), respectively.

6.5.3 Rotor Hub Loads

The rotor hub loads arc obtained by integrating the distributed loads along
the span of the isolated blade in the rotating frame, then transforming these
loads to the hub-fixed nonrotating reference frame, and summing the contrib-
ution from the individual blades.

The distributed forces and moments are due to the inertial and acrodynamic
loads on cach blade. The combined distributed force and moment vectors, fL,

and m', respectively, at a point on the blade are given by

= f; + £y = 18, + 08, + 4, (6.63)
and
ml = m + my = m,l(’e\x + m)l,’/e\y + mi‘@z (6.64)

where the components of f; and m, in the (¢,, éy, ¢,) system arc obtained from

L

ft fxl + Px

fy = qf1 + py (6.65)
f;~ fa+ p,

and
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L
’I‘ myp + qy
my‘ = My + cly (6.66)
I m, + q,

7

, respectively. These local force and moment distributions, after suitable inte-

gration, produce blade root force and moment at the axis of rotation which is
A A A

expressed in the rotating, hub-fixed system (i, j,, k) .

Since a finite clement formulation is employed in this study, the intcgration
of the distributed loads simply implics a summation of the clement contrib-
utions over the blade. To carry out these summations the local loads have to
be transformed to the rotating, hub-fixed system in which the total rotating
hub loads arc obtained. The contribution to the blade root force, due to local

force distribution, is obtained by

A A
Y L A A (6.67)
where
fy fy
o= [Tl <y (6.68)
iR i

and the transformation matrix [T, ] is defined as:

[Ter] = [Tep) [Tord (6.69)

where [T,,] and [T,,] are given by Egs. (2.7) and (2.4), respectively.
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The blade root moment, in the rotating system, consists of contributions
from both the local moment distribution and the local force distribution. The

contribution duc to the local distributed moment is

N A N
mt = mb = W B e mB (6.70)
where
e mt
R1 T L
my, = [T.] m,, (6.71)
m, m,
and the contribution due to the local distributed force is given by
mR? = R, x -
(6.72)

R2% R2% R27
= my i+ my g+ my Tk,

where the vector Ry is the position vector of a point on the deformed clastic

axis, given by combining Egs. (3.5) and (4.20)

A A A A A
Rp = ¢jip + heip, + (x+u)e, + ve, + we,

(6.73)
R~ R/ R D
= Ryplip + RyOJr + Rk
with
RR
x0 ¢y + hecos f (X4 u
RR > = 0 ; + [T { v } (6.74)
. Sin w
R1Y) S
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Thercfore the components of mR? in the (Ai,,’j,, ﬁ,) system can bc obtained by

combining Eqgs. (6.73), (6.63) and (6.67) with Eq. (6.72):

R2 R (R R R

my Ryo fz - RZO fy
R2\ _ R (R R (R

mk2h = JRR R _ gR {F (6.75)
R2 R (R R (R

m, RxOfy - Ry0 fx

The total contribution to the blade root moment due to the moment and force

distribution at a point on the blade, mR , is given in by:

mR = mR! + mR?
RA RA R A (6.76)
= my i + mgj + myk
where

mRy  (mRl 4 mR2

RU _ R1 R2
my > = {mg + my (6.77)

mk) (Rl 4 mR2

The total blade root force and moment at the axis of rotation arc obtained
by integrating the contributions to the blade root force and moment, f* and
mR | respectively, due to local distributed loads, over the span of the blade.

For the k-th blade, the total blade root force and moment vectors have the

form:

FRE W) = FRY W, + FREG G + FRY UK, (6.78)

MRY Y = MM + MBUYTL + MYk, 679)
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where

2n(k — 1)

5 (6.80)

Ve = ¥ +

1s the azimuth angle of the k-th blade for a B-bladed rotor.
Transforming the root force FRK and the root moment MRk to the nonro-
A

A A
tating, hub-fixed system (i, jn.K,,) and summing the contribution due to each

blade, viclds the total hub force and hub moment vectors

Fiw) = Fl ), + Flw) iy + Filw) ke (6.81)
and
Mty = M), + M), + MEw) K, (6.82)

, respectively, where.

B
FRw) = ) [FR W cosyy — FRYysing 1 (6.83a)
k=1

B
) = ) [FRyysingy + FRNYcosgy ] (6.83b)

k=1
B
Flw) = ) FR¥yy) (6.83¢)
k=1
B
M) = ) EMB Y cos gy - MR ysing 1 (6:340)
k=1
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B
M) = ) EMBgpsin gy + My @dcos iy ] (6:34)
k=1

B
M) = > MR (6.84c)
k=1

In Egs. (6.83) and (6.84), the transformation between the rotating, hub-fixed
system (Ai,,},, lA\'r) and the nonrotating, hub-fixed system (?n,,/in,, lA(m) has been
defined in Egs. (2.1) and (2.2).

In the trim analysis, described the previous subsection, the total thrust

gencrated by the rotor, Ty , and the longitudinal hub force, Hy , are given by:

Tg = Fllw) (6.85)
and
Hp = Fi(y) (6.86)

respectively; while the pitching moment M, and the rolling moment M, duc

to hub loads are given by:

H
My = M) (6.87)

and

M, = M) (6.88)

rl

respectively.
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6.5.4 Coupled Trim and Aeroclastic Response Solution Using Harmonic
Balance

The trim equations depends upon the blade degrees of freedom through the
rotor forces and moments, which arc functions of the blade responsc. There-
fore the helicopter trim and blade acroclastic response problems are inherently
coupled, and cannot be solved indcpendently. One possible approach uses an
itcrative procedure in which an approximation of the blade response is used to
solve for an approximate trim solution, which is then substituted back into the
bladc cquations to obtain an improved approximation of the blade response.
This procedurc is continued until the trim and response solutions converge.
If the number of unknowns in the blade cquations is small, then this iterative
proccdure for solving the coupled trim-acroelastic response problem is con-
venient, such as in the case of hover. However this procedurc can be compu-
tationally inefficient for the case of forward flight since the number of
unknowns involved in the blade equations for forward flight is usually at least
onc order of magnitude larger than that for the case of hover.

In this study, the coupled helicopter trim and blade acroclastic response
problem in forward flight is solved by an alternate procedurc in which the trim
and response solutions are obtained simultaneously using the harmonic bal-
ance technique.

The equations of motion of an isolated blade in steady, level forward flight,
Eq. (6.35), are periodic. The response of the blade is also periodic with a

fundamental frequency of l/rev (i.e. y,(¥)=y,(¥ + 2n) ), and thus it can be
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approximated by a truncated Fourier series expansion containing N; har-
monics

N”
Yo Yoo + 2 [¥onc COSMY) + Yons sin(ny)] (6.89)

n=1

where y,, represents the constant part, or the average valuc of y, over one
rotor revolution; Y, and Yy, represent the cosine and sinc amplitudcs, re-
spectively, of the n/jrev harmonics. Collectively Yoo, Yonc and y,,, rcpresent a
total of (1 + 2N,,) vectors, cach containing N, coefficients where N, is the
number of modes used in the modal coordinate transformation, or the size of
the vector of generalized coordinates of the blade. The number of harmonics
N,, retaincd in the Fourier serics expansion of the blade degrecs of freedom
determines the accuracy of the response solution. For a B-bladed rotor the
vibratory hub loads, which arc calculated based on the responsc solution, are
predominantly B/rev, thus at least B harmonics must be retained. In this

study, the number of harmonics retained is obtained by

Ny=B+ 1 (6.90)

The blade cquations and the trim equations, represented by Eqs. (6.35) and
(6.37), respectively, can also be approximated by truncated Fourier series ex-

pansions containing Ny harmonics

Ny
fio = g + ) [y COSY) + g Sin(@y)] (6.91)

n=1
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Ny
= £+ ) [fipe COSY) + fypg sin(ny)] (6.92)
n=1

An approximatc solution to the blade cquations can be obtained by sctting the

constant part, and the first Ny harmonics, in Eq. (6.91) to zcro:
| [ .
o = 5| 1500 o Vor Vi W) 0 = O (693)
<" 40

and for 1 <n <Ny

r 21

) ..

fone = ), (Vb Yo, Yoo Yo ¥) cos(ny) dyy = 0 (6.94)
l r2n

fons = ), (Yo, ¥ Yoo Yo V) sin(ng) dy = 0 (6.95)

The trim state requires enforcing the equilibrium condition only on the average
value of the forces and moments acting on the helicopter over one revolution,

thus only the constant portion of Eq. (6.92) needs to be sct to zero:
1 [ .
o = 5| (0 o I Yo V)6 = 0 (696)
0

The harmonic balance approach to the coupled trim-acroelastic response
solution requires the simultancous solution of the nonlincar algebraic system
represented by Eqs. (6.93)-(6.95) and (6.96) for the vector of trim parameters
y. and the cocfficient vectors denoted by yug, ¥ene » 20d Yy (1 <n < Ny).
There are [5 4+ N (1 + 2N,,)] algebraic equations in terms of 5 trim variables

and N (1 + 2N,;) blade expansion cocfficients. In this study, Gaussian
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quadrature with 30 intcgration points is used to evaluate the integrals in Egs.
(6.93)-(6.95) and (6.96); and the nonlincar algebraic cquations solver
DNEQNF of the IMSL[107] subroutine library is used to obtain the coupled

trim and acroclastic response solution.

6.5.5 Vibratory Hub shears and Moments

For a B-bladed rotor in steady, level flight, the vibratory hub loads are
predominantly B rev in the nonrotating, hub-fixed system (Ref. 52, p. 696).
The amplitude of the B/rev hub shears and moments are obtained from a
harmonic analysis of the hub loads. The cosine and sinc componcnts of the

B ‘rev hub shear arc

2n
FIDe = ~| F'w) cos(By)dy
0 (6.97a)

BP, ° BP, ° BP,
= (Fyieine + (Fyll)c]nr + (Far)e ke

5 2n
1D = ] Fly) sinBy iy
0 (6.97b)

BP, % BP, © BP,
= (FxiD)s lne + (FyH)anr + (Fzh)s Kor

respectively. Similarly, the cosine and sine components of the B/rev hub

b

moment are

2m
P = &7 M) costBuy
0 (6.98a)

A A BP, {
= (Ml‘(;}[l))c e + (M)]?l!l))c]nr + (MzH)c Kpr
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1

2n
(M” ) = —
S T 0

(Mxll)s nr

M'y) sin(By)dy

(M)ll)s o + (M) K

(6.98b)

, respectively.  The amplitudes of the B/rev hub shear and moment compo-

nents are calculated by

BP
FxH

FB[’

BP
F:H

and
BP
My

MBP

yH =

BP
Mg =

JEBPYZ 4 (FBP2

JFBER + (FBEY

/(F )c + (FzH)s

BP 2
\/(Mxll xH)s

JMBEZ + (MBE

\/(lel)c + (M )s

(6.99a)

(6.99b)

(6.99¢)

(6.100a)

(6.100b)

(6.100c)

, respectively. The B/rev hub shears and moments obtained from Egs. (6.99)

and (6.100) are a measure of the vibration levels of a helicopter in forward

flight; and they will be used in the study for vibration reduction using struc-

tural optimization, described in the next chapter.
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6.5.6 Stability in Forward Flight

The nonlincar periodic system, Eq. (6.35), is first lincarized about the steady
state, time-dependent cquilibrium position.  Subsequently, the stability of the
resulting lincar periodic system is determined from Floguet thcory[30]. The
procedurc uscd for lincarizing the cquations is similar to the hover case, except
that the cquilibrium position is now time-dependent. Lincarizing Eq. (6.35)
about the nonlincar equilibrium position y,, at given azimuth position v,

yiclds:

f, = [M(yp)Jay, + [Clyp)lAy, + [K(yp,)]Ay, + HOT. = 0 (6.101)

where

_ of

[M] = —-——a..b (6.102)
Yb

_ of

[C] = a'—b (6.103)
Yo

_ of

K] = a_b (6.104)
Yo

arc the mass, damping and stiffness matrices, respectively, of the linearized
system.
Expressing the linearized system, Eq. (6.101), in the first order state vari-

able form

z = [A(Y)]z (6.105)

where thc state vector z is defined as
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Ayb
z = { Ayb} (6.106)

and the system matrix [A] has the form

(0] (17
= _ _ — — 6.107
A [— (M1™'[K) —[M]'][C]] (6107

For the casc of hover, matrix [A] is constant and the stability of the system
is determined by the cigenvalues of [A]. However in forward flight, the sys-
tem matrix [A] is pcriodic with a period of one rotor revolution (i.e.
[A(W)] =[AW + 2n)] ). Therefore the stability of the pcriodic system is de-
termined from the cigenvalues of the state transition matrix at the cnd of one
period, using Floquet theory[30]. The characteristic multiplicrs, which are the
cigenvalucs of the state transition matrix for the periodic system at the end of

one period, [®(2n, 0)] , are given by

Ay =2, +£1Q, j=1,..., Ny (6.108)

The characteristic exponents

i=1,.., Ny (6.109)
of the periodic system are related to the characteristic multipliers by[30]:

o 2, A2

T | (6.110b)
“iT 3 7. )
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where 7 = 27 is the nondimensional period of rotor. From Egs. (6.1 10a,b), it
is evident that the real part of the characteristic exponent is associated with the
damping present in a particular mode. However, the imaginary part, which
represents the frequency, is determined only within an integer multipic of the
common period 7. The lincarized system is stable if the rcal part of the char-
acteristic exponents {;< 0 for all j.

The state transition matrix at the end of one period, [®(2r,0)] , is calcu-
latcd by integrating the lincarized system from 0 to 2n using DE/STEP, a
general purpose Adams-Bashforth ODE solv_cr[82]. In this study, all 2N,
columns of the state transition matrix are calculated in a single pass using the

method described in Ref. 13.
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Chapter VH

STRUCTURAL OPTIMIZATION FOR VIBRATION REDUCTION

This chapter describes the optimum structural design of composite helicop-
ter rotor blades, with swept tips, for vibration reduction in forward flight,
subject to frcquency and acroclastic stability constraints. The acroclastic
analysis, nceded for optimization, consists of the finite clement analysis dc-
scribed in the previous chapters of this study. Approximation concepts[80]
are uscd in the optimization process to reduce the computational requirements.
The optimization study is applicd to composite blades with two-ccll, hingeless
configuration. Ply oricntations in the horizontal and vertical walls of the blade
cross scction and tip sweep and anhedral angles are selected as design vari-

ablcs.

7.1 STATEMENT OF THE OPTIMIZATION PROBLEM
The optimum dcsign problem, solved using mathematical programming
mcthods, can be stated in the following mathematical form[31]. Find the

vector of design variables D such that

gD<0, q=1,2,..,Q (7.1)
i=1,2,..,ND (7.2)

and
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J(D) - min (7.3)

where g (D) is the g-th constraint function; D; is the i-th design variable; and
J(D) is the objective function. The superscripts L and U dcenote lower and

upper bounds, respectively.

7.1.1 Design Variables

Previous studics[28,29,14] on rotor blade optimization for vibration re-
duction in forward flight have emphasized the effect of design variables re-
presenting the dimensions of the main spar of the blade, together with the
influcnce of non-structural tuning masses. Changing the structural dimensions
of the main spar, would require recalculation of the numerous constants com-
puted by the two-dimensional section analysis used for the composite cross-
scction, and this would not provide a clear picture on the influence of the new
clements associated with the current aeroelastic analysis, such as bladc sweep
and ply orientation angles of the composite blade. Therefore it was decided to
restrict the design variables used in this study to four. These arc the ply ori-
entation in the horizontal and vertical walls of the compositc cross section, Ay
and A,, togcther with the sweep and anhedral angles,‘/\s and A,, which char-

acterize the swept tip. Thus the vector of design variables is given by
T
D = [AL Ay A AL (7.4)
In this study, composite blades having a two-cell configuration, shown sche-

matically in Fig. 7.1, are used as the basis of structural optimization. The ply
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angle Ay, is positive when the fibers in the horizontal walls are oricnted toward

the leading edge of the blade; whilc a positive A, implies that the fibers in the

vertical walls arc oriented toward the top wall of the bladc. Detailed layout

of the two-ccll composite cross sections will be described in the chapters deal-

ing with the results ontained in this study.

7.1.2 Constraints

Two types of bchavior constraints arc used.

1.

Frequency placement constraints. The fundamental frequencics in flap,
lag and torsion are required to be between preassigned upper and lower
bounds. A typical frequency placement constraint is expressed math-

ematically in the form

gD)=——~-1x<0, (7.5)
@

gD)=1— —“’T <0, (7.6)
w

Equations (7.5) and (7.6) are written for each of the three fundamental
frequencies of the blade in flap, lag and torsion, respectively, providing
a total of six behavior constraints. The higher frequencies are also

constrained to avoid B/rev resonances in a B-bladed composite hingeless

rotor system.
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2. Aecroclastic stability constraints. The blade is required to be
acroclastically stable and retain adequate acroclastic stability margins

in hover. These constraints are expressed mathematically as

gD) =) + . <0, kK=1,..,N_ (7.7)

where N is the number of modes used in the modal coordinate trans-
formation during the solution of the equations of motion; {, is the real
part of the cigenvalue in hover for the k-th mode; ¢, represents the
minimum acccptable damping level in hover for the k-th mode. Al-
though no constraints are placed on the stability in forward flight, an
acroclastic stability analysis in forward flight is always performed at the
cnd of the optimization process in order to ensure that the rotor blade
configuration corresponding to the final optimum design is
acroelastically stable. Furthermore, it should be noted that for many
soft-in-planc blade configurations the most critical condition for
acroclastic stability, is the hover condition. Thus, using this constraint,
instcad of an acroelastic stability constraint in forward flight, is quite
reasonable.
Side constraints, shown mathematically in Eq. (7.2), are also placed on the
design variables in the form of upper and lower bounds to prevent the vari-

ables from reaching impractical values during the optimization process.



7.1.3 Objective Function

The objective function to be minimized is a mathematical cxpression re-
presenting the weighted sum of the B/rev oscillatory hub shear resultant and
the B/rev oscillatory hub moment resultant, in the hub-fixed nonrotating
frame; for a B-bladed rotor system, at an advance ratio of u = 0.30 . It should
be noted that the choice of this particular advance ratio as a representative
valuc has been justificd in previous studies[28]. This expression can be written

symbolically as

J(D) = Kpy/(FB2 + (FRR? + (FBEY?
(7.8)

+ Ky /(MBEY + (MBE2 + (MBEY?

where K¢ and Ky, are weighting factors. The hub shears and moments are
nondimensionalized by myQ212 and mQ21? , respectively.

A sccond objective function is defined as the weighted sum of the B/rev
oscillatory hub shear and hub moment components in the hub-fixed nonrotat-
ing frame

JAD) = KpFry + KFyF?}l; + KgFoyp

(7.9)

BP BP BP
+ KvxMyy + KyyMyy + KMy

where Kg,, Kgy, Kgyy Ky Kyy and Ky, are weighting factors. All weighting

factors used in this study were selected to be either 0 or 1.
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7.2 FORMULATION OF APPROXIMATE PROBLEM

The calculation of the B/rev vibratory hub loads in forward flight is a fairly
complicated and computationally cxpensive task, becausc it requires the sol-
ution of a complete acroclastic responsc problem. Thercfore, it is important
to usc optimization proccdures which require the smallest possible number of
acroclastic response analyses and the associated hub loads computations. To
mcet this requirement, approximation concepts[80] are used to rcduce the
number of analysis rcquired in the optimization process. Thus, the computer
program which performs the acroelastic response and stability analysis is not
linked directly to the optimizer. Instead, the optimization is conducted on an
approximate problem which possesses the characteristics of the actual problem
in a ncighborhood of the current design. This approximate problem is contin-
uously updated as the optimization progresses.

In this study, a lincar approximation for the objective function and a con-
servative approximation for thec behavior constraints are uscd in the generation
of thc approximate problem. The linear approximation for the objective

function is based on the Taylor series expansion

ND
I(D) = JDg) + (%)D (D; - Dg) (7.10)
1 0

=1

The conservative approximation[39], used for the behavior constraints, is a
hybrid form of the lincar and reciprocal approximation which is more con-

servative than either; it is expressed mathematically as
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\D -
ED) = gDg) + Y Gi(”—g)D (D; - Dg;)
0

=1

where

og
| D{ — >0
l( aDi )Do

g

G, =
D/ D; D(——) <0
! ! ! 6D, [)0

1

(7.11)

(7.12)

The approximate problem described above is solved using a genceral purpose

optimization package DOT[106], which is based on the modificd mecthod of

feasible directions. A detailed description of the optimization process is pro-

vided next.

7.3 DETAILED DESCRIPTION OF THE OPTIMIZATION PROCESS

The organization of the optimization process used in this study is depicted

in Fig. 7.2, and it consists of the steps provided below.

I. Sclect an initial trial design Dy,

2. Perform the two-dimensional cross sectional analysis to calculate the

section constants based on the current design.
3. Calculate the natural frequencies and mode shapes.

4. Perform the aeroelastic aralysis in hover.

5. Perform the acroclastic analysis in forward flight, including calculation

of hub loads.
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6. Calculate the objective function, behavior constraints and the sensitivity
derivatives of the objective function and constraints with respect to the
design variables; where the sensitivity derivatives are calculated using
the finite difference approach.

7. The exact problem represented by Eqs. (7.1-3) is replaced by an ap-
proximate problem where the objective function J(D) is cxpressed by its
lincar approximation about the current design, Eq. (7.10), and the con-
straints arc expressed by a conservative approximation about the cur-
rent design, Eq. (7.11).

8. Solve the approximate optimization problem, using the DOT optimizer,
to obtain a ncw, improved design.

9. The optimization process is repeated with the improved design as the
ncw starting point until the scquence of vectors D converges to a sol-
ution D* where all constraints arc satisfied and J(D*) is at lcast a local
minimum.

It should be noted that in the formulation of the sensitivity derivatives, an
analytical approach using chain rule differentiation[59-62] is computationally
morc cfficient if it is applicable to the aeroelastic model being used. The im-
plicit formulation[13] for the acrodynamic modeling, used in this study, has
distinct advantages over the explicit approach. However, the implicit formu-
lation docs not lend itself to generating explicit analytical expressions for the

sensitivity derivatives which have been found to be useful in structural

optimization[59-621.
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A semi-analytical approach[96] which employs a combination of analytical
and finitc difference approaches, compatible with the acroclastic model used
in this study, was recently developed with the intent of gaining some of the
computational efficiency provided by the analytical approach. As shown in
Ref. 96, frequency sensitivity with respect to ply oricntation corrclates well
with the finite difference approach, when the ply angles are sufficiently far
away from zcro ply angles. However, the stability scnsitivity analysis in hover
was only partially successful because all second derivative terms in the formu-
lation had to be neglected, so as to achieve computational cfficicncics in excess
of the finite difference approach. Furthermore, this approach also exhibits
limited reliability when the design variables include tip sweep and anhedral
angles. Thercfore, it was decided to abandon the semi-analytical approach for
the formulation of the sensitivity derivatives[96] and instcad the scnsitivity
dcrivatives were calculated using the finite difference approach with carefully

sclected increment size for the design variables.
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Chapter VIII1

MODEL VERIFICATION

It is essential to validate the computer program implementing the analytical
model and solution procedures developed in this study before using it for var-
ious analytical studies. Although the analytical model developed in this study
is intended for compositc blade analysis, validating the modecl for isotropic
blades was an essential prerequisite. This is because the isotropic blade results
obtained in previous studies can be used directly to validate the onc-
dimensional global analysis of the blade. For the case of composite blade, the
blade scctional propertics are generated by a separate two-dimensional cross
scctional analysis and thus the comparison for these results is affected simul-
tancously by both the onc-dimensional global analysis, as well as the two-
dimensional cross sectional analysis, and it does provide direct comparisons for
the onc-dimensional global analysis.

In the present study, comparison of the trim and bladc responsce results can
be used to test both the validity of the cquations of motion as well as the sol-
ution procecdure for the coupled trim-acroclastic response analysis. The blade
stability results are more sensitive to small differences in the ecquations of mo-
tion than the trim and response results. Therefore comparison of thc blade
stability results can also be used as a rcliable test of the accuracy of the
equations of motion. Finally, it should be emphasized that the vibratory hub

loads can be very sensitive to small differences in the equations of motion, thus
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comparison of the vibratory hub loads should be made after the stability

comparisons have been carried out.

8.1 VALIDATION FOR THE CASE OF HOVER

Two different blade configurations are used for the validation of the hover
analysis computer program. The first is an isotropic stiff-in-planc blade con-
figuration; and the results are compared with those presented in Ref. 41. The
importancc of the trcatment of the axial degree of freedom is also illustrated
in this validation. The sccond is a single-cell stiff-in-planc composite blade
configuration; where the results are compared with those presented in Refs. 22

and 48.

8.1.1 Isotropic Blade

The isotropic stiff-in-plane blade configuration has fundamental rotating
frequencies of 1.15/rev, 1.5/rev and 5.0/rev in flap, lag and torsion, respec-
tively. The data for the baseline configuration of the blade is taken from
Hodges and Ormiston[41] and is given in Table 8.1. Results from the present
analysis are compared with those obtained in Ref. 41.

The isotropic blade model used in Ref. 41 is based on the equations of mo-
tion derived in Ref. 40 and specialized to the case of uniform, untwisted,
hingeless rotor blades without chordwise offsets between the elastic, mass,
tension and aerodynamic center axes. Quasi-steady aerodynamics based on

Greenberg's theory were used to calculate the blade aerodynamic loads. The
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climination approach , described in Chapter 6, was used in the trcatment of

the axial degree of freedom. The equations of motion were solved by

Galerkin’s method using six coupled, rotating modes.

TABLE 8.1

Basclinc configuration for isotropic rotor blade in hover

o, =15

o =115

wpr =50

y=150 ¢/R =n/40
6 =0.1 B,=0.0
K /R=0.0 a=2n
Ko/ R = 0.025 Cq = 0.01
(ka/kmP = 1.5 B=4

Offscts of center of mass, tension center and aerodynamic center
from elastic axis are zero.

The results of the acroelastic analysis are presented in Figs. 8.1 through 8.3,
which were generated using scven coupled rotating modes, including three flap,

two lag, one torsion and one axial. In the figures, the solid lines correspond

to results from the present study, which uses the substitution approach in the
trcatment of the axial degree of freedom; while the symbols correspond to the
results found in Hodges and Ormiston[41]. Figure 8.1 shows the cquilibrium
tip deflection of the blade as a function of blade collective pitch angle. It is
cvident that the results of the present analysis show an excellent correlation in
the lag and torsion modes and very good correlation in the flap mode with

thosc obtained in Ref. 41. The results of the stability analysis are shown in
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Figs. 8.2 and 8.3. Figure 8.2 presents the variation of modal frequency as a
function of collective pitch of the blade; while the variation in modal damping
as a function of collective pitch angle is shown in Fig. 8.3. The results corre-
sponding to the present study provide an excellent correlation in modal fre-
quency and very good corrclation in modal damping with the results of Ref.
41.

The cffect of retaining or deleting the axial modec in the present study, which
uses the substitution approach, on the results obtained from the acroelastic
analysis has been also examined. The acroclastic stability analysis was per-
formed for two cascs; one with seven modes (having 3 flap, 2 lag, 1 torsion and
I axial modes) and the other with six modes (having 3 flap. 2 lag and | torsion
modcs). The results arc shown in Figs. 8.4 through 8.6. Thc solid lines rep-
resent results obtained when the axial mode is retained and the dotted lincs
correspond to the results without the axial mode. Figure 8.4 shows the vari-
ation of cquilibrium tip deflection of the blade with collective pitch setting. 1t
is cvident, from thesc results that the equilibrium position of the blade in hover
is not influenced by the presence or absence of the axial mode. Figure 8.5
shows thc variation of modal frequencies with pitch angle, obtained in the
stability analysis. The results indicate that the delcetion of axial modc has a
ncgligible cffect on the modal frequencies when compared to the results ob-
taincd with the axial mode. At high pitch angles, the analysis without axial
mode slightly over-estimates the frequency in the flap mode. The variation of
modal damping with pitch angle is shown in Fig. 8.6. At low pitch angles

(6o < 0.1 rad), the inclusion or deletion of axial mode does not influence the
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modal damping. However, at high collective pitch angles, the analysis without
axial mode over-estimates the lag damping and under-estimates the damping
in flap modc when comparcd to the damping levels predicted by the analysis
which includes the axial mode. The difference in the damping levels predicted
increases significantly with pitch angle. The damping in torsional mode is only
slightly affected by the presence or absence of the axial mode, at high pitch

angles.

8.1.2  Single-cell Composite Blade

The stability rcsults for a stiff-in-plane, single-cell, composite hingcless
bladc configuration arc compared with results obtained for a similar casc from
two different analyses described in Refs. 22 and 48. The blade structure is
assumecd to consist of a laminated rectangular box beam with uniform
spanwisc propertics, as depicted in Fig. 8.7. The cross-section of the bcam has
a width of 7”7 and a hecight of 2”, with a uniform thickness of 0.35”. The
bascline configuration is assumed to have zero ply angles, i.c., all laminates of
the becam consists of laminae with fibers parallel to the blade length. The basic
paramcters describing this configuration are given in Table 8.2 where the ma-
terial constants correspond to a graphite/epoxy type compositc material.

The blade cross-scctional dimensions and rotor configuration shown in Ta-
blc 8.2 are based on Hong and Chopra[48]. The rotor radius (R), the rotor
speed (), and the prihcipal mass radii of gyration of the cross section

(ki» kma) were not given in Ref. 48, but were selected for this study such that
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TABLE 8.2
Basclinc configuration for single-cell composite rotor blade

Fundamental, coupled rotating natural frequencies:

wp, = 1.533

W = 1.187

w7 = 5.186

y=135.0 ¢/R =0.08
o=0.1 B,=0.0
a=5.7 C,, = 0.005
Cyo = 0.01 B=4
Kn/R=0.0 R = 255.45"
Kmof R = 0.01609 Q =360 rpm

Offscts of center of mass, tension center and aerodynamic center
from clastic axis are zcro.

Matcrial constants:
E, = 30.x 10% psi
Er=3.x 10% psi
Gepr= 1.2 x 108 psi
vir =03

the nondimensional rotating natural frequencies match those given in Ref. 48
as closcly as possible. The fundamental rotating natural frequencies obtained
for this sct of paramecters are: wg, = 1.187/rev , w,, = 1.533/rev , and
wy, = 5.186/rev ; which should be compared to wg, = 1.15/rev , o, = 1.5[rev
, and wy; = 5.0/rev from Ref. 48. Similar calculations were also carried out
by Fulton and Hodges[22], who obtained a blade configuration with
wg = L17[rev, o, = 1.45[rev , and oy, = 5.06/rev .

The composite blade model used in Ref. 48 was based on a moderate de-

flection theory, where the strain-displacement relations were taken from
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Hodges and Dowcll[40], and thercfore the cffect of transverse shear defor-
mations was not included. Quasi-stcady acrodynamics was uscd to calculate
the acrodynamic loads. The solution of the equations of motion was based on
a finite clement approach.

The analysis presented in Ref. 22 used the nonlinear intrinsic formulation
of Ref. 46, where the nonlincar bcam kincmatics was basced on the large de-
flcction theory developed in Refs. 17 and 18. Acrodynamic loads werc calcu-
lated from quasi-stcady aerodynamics. The solution of the equations of
motion was obtained from the finite clement approach.

The stability results obtained from the acroclastic modcl developed in this
study were compared with Ref. 22 and 48 for a symmetric ply configuration
where the ply lay-ups on opposite walls were identical. The horizontal walls
have zcro ply angles (A, = 0) . For vertical walls the laminac in the outer half
thickness have zero ply angles while the laminae in the inner half thickness are
all oricnted at the same ply angle A,. A positive A, implies that fibers are
oriented toward the top wall of the blade. This configuration was referred to
as Casc 1 in Ref. 48.

The stability results, depicted in Fig. 8.8, are presented in terms of the real
part of the hover cigenvalues, as a function of the rotor thrust level C/o ; for
A, = 0°,30° and —30°. The lines in Fig. 8.8 are the results from the present
analysis. The results from Ref. 22 are depicted by the bullet symbols for val-
ucs of Cyfo = 0.25, 0.5 and 0.1; while the results from Ref. 48 are represented
by the solid triangle symbols, for values of C;/o = 0.1. It is evident from Fig.

3.8 that the correlation with Ref. 22 is very good, but the correlation with Ref.
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48 is poor cxcept for the case A, = 0°. The discrepancy of the stability results
from Ref. 48 with those from the present analysis and from Ref. 22 may be
attributed to the fact that the blade modcl uscd in Ref. 48 docs not contain the
cffect of transverse shear deformations, which is known to be important for
composite bladces.

It should be cmphasized that the corrclation presented in Ref. 22 was not
as good as the comparison displayed in Fig. 8.8, especially for C;/o = 0.05.
In Ref. 22, the correlation of Fulton and Hodges[22] with Yuan, ct al.[103],
which was based on the blade model of this study, was characterized as “fairly
good”, for C;/e = 0.05 and 0.1. However, an input error in the results pre-
sented in Ref. 103 for the singlc-cell composite blade case had been found soon
after thosc results were published. The results in Ref. 103 werc bascd on an
incorrect value of longitudinal Poisson’s ratio equal to v, = 0.03 which was
an order of magnitude smaller than the correct value of v, = 0.3, listed in
Table 8.2. This error had been corrected in all subsequent studies involving

this single-cell blade configuration.

8.2 VALIDATION FOR THE CASE OF FORWARD FLIGHT

To validate the forward flight analysis and the computer program which
inplements the analytical model and solution procedure, a correlation study
with a completely different model, developed in Ref. 64 (a slightly modified

version of Ref. 64 is available as a recent low number NASA CR report, Ref.
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65), was conducted. Carcful comparisons for trim, blade acroclastic responsc
and stability. and vibratory hub shcars and moments, were carried out.

The model described in Ref. 64 was developed for isotropic rotor blades
undergoing moderate deflections, and the primary objective of the study was
vibration reduction in hingcless rotors using an actively controlled trailing cdge
flap located on the blade. A fully flcxible blade éantilcvcrcd at the root, with
fully coupled flap-lag-torsional dynamics, was sclected to represent the
hingeless blade. The structural operator was taken from Ref. 76 where
cquations of cquilibrium for an isotropic blade, with coupled flap-lag-torsional
dynamics, undergoing modecrate deflections were presented in detail.  The
incrtial loads were derived in a straightforward manner using D’Alembert’s
principle. Quasi-stcady acrodynamics based on Greenberg’s theory was used
to approximate the acrodynamic loads in forward flight. Trcatment of the

axial dcgree of freedom was based on the climination approach , with an ad-

ditional simplifying assumption that the blade is inextensiblc. The incrtial and
acrodynamic loads were formulated cxplicitly using the symbolic manipulation
program MACSYMA[108]. The equations of motion were solved using a
global Galerkin approach based on six uncoupled free vibration modcs of a
rotating cantilevered blade, including three flap, two lead-lag, and onc torsion.
These rotating mode shapes and frequencies were generated from the first nine
exact nonrotating modes of a uniform cantilevered beam.

It is important to notc that although the two aeroelastic models usc similar

acrodynamic theories and assumptions, however, the aecrodynamic loads were
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formulated cxplicitly in Ref. 64; while an implicit formulation was used to
calculate the acrodynamic loads used in this study.

The validation studies were carricd out for an isotropic hingeless rotor
blade, with uniform spanwisc propertics. Two blade configurations were con-
sidered; the first configuration was a soft-in-plane rotor blade with the prop-
erties given in Table 8.3, and the sccond configuration was a stiff-in-plane
rotor blade with the propertics shown in Table 8.4. The two bascline config-

urations arc identical except for the lcad-lag bending stiffnesses.

TABLE 8.3
Bascline configuration for soft-in-planc isotropic rotor blade in forward flight
El,,/mQ2R* = 0.0106

Elrr/mQZR4 == 0.030|
GJ/mQ2R* = 0.001473

(Ka/km)? = 0.5259 a=2n

K.,/R = 0.0 C, = 0.01
Ko/ R = 0.02 Cy = 0.005
y=5.5 Xpe/R = 0.0

o = 0.07 Zeo/R =0.50
¢/R = 0.055 Xpa/R = 0.0
B,=0.0 Zps/R=10.25
B=4 fC,/nR2 = 0.01

Offscts of center of mass, tension center and aerodynamic center
from clastic axis are zero.

The nodimensional, uncoupled, rotating natural frequencies calculated by
the two fifferent formulations are summarized in Table 8.5 for both soft-in-
plane and stiff-in-plane configurations. The two formulations yield the same

flap and lcad-lag frequencies in both cases, but slightly different torsional fre-
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TABLE 8.4
Bascline configuration for stiff-in-plane isotropic rotor bladc in forward flight
El,,/m{2R* = 0.0106

E],;,'/mQ2R4 = 0.'474
GJ/mQ2R* = 0.001473

(KaJk P = 2.0415 a=2n

k. /R =00 Cyo = 0.01
k,,/R = 0.02 Cy = 0.005
y=5.5 X;o/R =00

¢ =0.07 " Z/R=0.50
¢/R = 0.055 Xpa/R = 0.0
B,=0.0 ZoA/R =025
B=4 fC,/nR? = 0.01

Offscts of center of mass, tension center and aerodynamic center
from clastic axis arc zcro.

quencies. The small discrepancies in torsional frequencies can be attributed to
the difference in the treatment of the axial degree of freedom, which is retained
in this formulation but eliminated in the formulation presented in Ref. 64. The
presence of a finite axial stiffness in this formulation introduces a torsional
stiffening cffect proportional to kj = (El,, + El;()JEA . However when the
blade is assumed to be inextensible, which is done in the formulation presented
in Ref. 64, the axial stiffnss EA is treated as infinite and thus k, = 0.

A comparison of trim, blade response, stability, and 4/rev hub loads in for-
ward flight was conducted for the two formulations. The results were obtained
using three flap, two lcad-lag, and onc torsion modes for both approaches, but

with an additional axial mode used in the present formulation. The results
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TABLE 8.5

Frequency comparison for isotropic rotor blade configurations used in forward
flight analysis

Soft-in-planc bladec:

This study Ref. 64
Wiy = 1.125 1.125
W = 0.732 0.732
Wy = 3.263 3.176

Stiff-in-planc bladc:

This study Ref. 64
w,;,= l.l25 l.l25
W, = 1.417 1.417
Wy = 3.501 3.176

were calculated for a weight coefficient of Cy, = 0.005 and for advance ratios

up to ¢ = 0.4 . Results from this comparison study are presented next.

8.2.1 Trim Results

Figures 8.9 and 8.10 show a comparison of trim results obtained using the
two formulations for the soft-in-planc blade configuration. The blade collec-
tive and cyclic pitch angles at various advance ratios are presented in Fig. 8.9,
and the rotor inflow and angle of attack are shown in Fig. 8.10. The solid lines
represent results obtained from the model presented in this study and the bul-
let symbols depict the results obtained in Ref. 64. The correlation between the

two sets of results is excellent and there are only slight deviations at high ad-
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vance ratios, (i.c., 4 =0.4) in the collective pitch, cyclic sinc and rotor angle of
attack.

Similar comparisons of trim results arc presented in Figs. 8.11 and 8.12 for
the stiff-in-planc blade configuration. Once again the agreement is excellent,
with only very minor deviations at high advance ratios. However, these dif-
ferences are cven smaller than those present in the soft-in-planc blade results.

Exccllent agreement between the trim results is to be cxpected, since the
trim solution is relatively insensitive to the higher order terms, which determine
the accuracy of a particular formulation. The minor differences observed in
the trim results at high advance ratios can probably be attributed to the dif-
ference in aerodynamic formulations; the model in Ref. 64 employs an explicit
approach bascd on an ordering scheme, while the model in this study employs
an implicit approach. Some of the higher order terms neglected in Ref. 64, but
retained in this study, may influence the results at higher advance ratios.

Overall, the correlation between the trim results is excellent, and the minor
differences present at high advance ratios are expected to have only a small

influence on the blade response, stability, and vibratory loads.

8.2.2 Blade Response

Blade acroelastic response obtained from the two formulations is compared
by considering the tip deflections around the azimuth. The flap, lag and
torsional tip deflections of the blade at an advance ratio of = 0.3 are com-

pared in Fig. 8.13 for the soft-in-plane blade configuration. The correlation is
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excellent for the flap and lag modes. There is a mild discrepancy in the
torsional tip deflection which can be attributed to the differences in: (1) the
treatment of the axial degree of freedom, which influenced the torsional fre-
quency slightly; and (2) the formulation of the acrodynamic loads, which is
explicit in Ref. 64 but implicit in this study.

The comparison of the tip deflections at g = 0.3 for the stiff-in-plane blade
configuration is presented in Fig. 8.14. Excellent agreement is again evident
for the flap and lag modcs, while minor descrepancy in the torsional tip de-
flection still exists for the same reasons that were stated above for the soft-in-
planc blade configuration. The larger offset present in a portion of the
torsional tip deflection near = 120° is probably due to the fact that the dif-
ference in torsional frequency between the two formulations is larger for the

stiff-in-plane case.

8.2.3 Blade Stability

A comparison of blade aeroelastic stability for the soft-in plane configura-
tion, using the two formulations, is presented in Figures 8.15 through 8.17.
The real part of the characteristic exponent, which is a measure of blade
damping or stability in forward flight, is shown as a function of advance ratio.
The symbols L, F and T dcnote lag, flap and torsional modes, respectively.
The first and second lag modes arc shown in Fig. 8.15, which exhibits good
correlation between the two approaches for the first lag mode. The discrep-

ancy is quite small and it varies between 4% - 7%. The damping in the first
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lag mode dccrcases initially between g =0 and 0.1, then remains rclatively
unchanged between g =0.1 and 0.2 and it finally increases for ¢ > 0.2 . The
agreement between the results associated with the second lag mode is not as
good as that associated with the first lag mode. The primary reason for these
differences is attributed to the fact that the second lag mode has inherently low
damping, and for soft-in-planc blade configurations it is scnsitive to small dif-
ferences in the blade models, such as the treatment of the axial degree of free-
dom. The results for the second lag mode, shown in Fig. 8.15, still display
similar trends since the damping increascs with advance ratio. The mild in-
stability present in the sccond lag mode in the lower advance ratio range can
be removed by a small amount of structural damping. The damping associ-
ated with the first flap and first torsion modes is depicted in Fig. 8.16, while
damping in the second and third flap modes is displayed in Fig. 8.17. The
corrclation between the two sets of results is excellent for all the four modes
considered in Figs. 8.16 and 8.17. The damping levels in these four modes are
inscnsitive to variations in advance ratio u; the characteristic exponent associ-
ated with the first flap mode exhibit a typical “split” between p= 0.3 and
u = 0.4, as shown in Fig. 8.16.

Similar comparisons of the acroelastic stability results for the stiff-in-plane
configuration are presented in Figs. 8.18 through 8.20. The corrclation be-
tween the two scts of results is very good for both lag modes throughout the
range of advance ratio (up to 4 =0.4), and for the first and third flap modes

except that mild deviations are present at high advance ratios near p =0.4 for

these two modes. The comparison of the damping in the first torsion and sec-
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ond flap modecs is fairly good; with descrepancics under 10% for most part of
the range of advance ratios, as evident from Fig. 8.20. The damping level of
the first lag modc is considerably higher for the stiff-in-planc blade than for

the soft-in-planc blade, as cvident from Figs. 8.15 and 8.18.

8.2.4 Vibratory Hub Loads

The 4/rev hub loads calculated using the two formulations are compared in
Figs. 8.21 through 8.23 for the soft-in-planc blade configuration. The longi-
tudinal shcar and rolling moment arc plotted in Fig. 8.21, the lateral shear and
pitching moment arc shown in Fig. 8.22, and the vertical shear and yawing
moment arc depicted in Fig. 8.23. The comparisons arc quite good over the
cntire range of advance ratios considered, though the results of the two for-
mulations diverge slightly at the higher advance ratios. The comparison be-
tween the 4, rcv hub moments is best with a difference of less than 5% at
#=0.4. The greatest discrepancy between the two sets of results obtained for
the hub loads is cvident in the 4/rev lateral hub shears, which differ by 20%%
at u=04.

The 4/rev hub loads for the stiff-in-plane blade configuration arc compared
in Figs. 8.24 through 8.26. Thec comparisons are not as good as those obtained
for the soft-in-planc case. All but the vertical shear component compare very
well up to u = 0.3, and then begin to diverge at the higher advance ratios. At
the highest advance ratio considercd, ¢ = 0.4, the two scts of hub moments

differ by about 20%-50%, which is much larger than observed in the soft-in-
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planc casc. However, the disagreement in the inplanc shears at high advance
ratio is only slightly worse, diffcring by 30% at u = 0.4. The best agreement
at high advancc ratio for the stiff-in-planc configuration is obscrved in the
vertical hub shears calculated by the two formulations, which arc almost
identical at u =04 .

The disagreement in the vibratory hub loads can be attributed to the dif-
ferences between the two formulations already cited, i.c., the difference in the
modecling of the axial degree of frecdom, and the difference in the acrodynamic
formulations. The results scem to indicate that the vibratory hub loads are
most scnsitive to the small differences in the formulations. Therefore good
corrclation in vibratory hub loads is more difficult to achicve than similar

corrclations for trim values, blade tip responsc, or acroclastic stability.
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Chapter IX
FREE VIBRATION AND AEROELASTIC BEHAVIOR IN HOVER

In this chapter, the free vibration and the hover stability characteristics of
compositc hingeless rotor blades with straight and swept tips arc investigated.
Numerical results illustrating the effects of tip sweep, anhedral and composite
ply oricntation on blade natural frequencies and aeroelastic stability in hover

arc presented.

9.1 FREE VIBRATION ANALYSIS

The results in this section are divided into two parts : (1) results illustrating
the influence of ply orientation on the natural frequencies for both single-cell
and two-ccll composite rotor blades; and (2) influence of tip sweep and tip

anhedral on the natural frequencies of a two-cell composite blade.

9.1.1 Influence of Ply Orientation

The influence of composite ply orientation on the natural frequencies is
studied for two rotor blade configurations; these are: (1) a stiff-in-plane blade
having a single-cell composite construction, and (2) a soft-in-plane blade with
two-cell construction. In the présentation of the results, the identification of
the modes is based on the baseline configuration of the blade which has zero

ply angles. The natural frequencies are then traced as the ply orientation is
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varicd from a zcro ply angle. Since the modes are coupled at non-zcro ply
oricntations, the designation of the modes as flap, lag or torsion is for identifi-
cation purposcs only. In the figures, the notation L, F and T is used to rep-
resent lag, flap and torsional modcs, respectively. The blade is modeled with

five clements for both configurations.

9.1.1.1 Single-cell Composite Blade

The behavior of a hingcless, single-cell, stiff-in-plane composite blade con-
figuration is considered first. The blade structure is assumed to be represented
by a laminated rectangular box beam with uniform spanwise properties, de-
picted in Figure 8.7. The cross-scction of the beam has a width of 7” and a
height of 2”, with a uniform thickness of 0.35”. The baselinc configuration is
assumed to have zero ply angles, i.c., all laminates of the bcam consist of
laminac with fibers parallel to the blade length, and its basic parameters arc
given in Table 8.2. Natural frequencies are computed for two cases, with
symmectric configurations, where the ply lay-ups on opposite walls are identi-
cal. In the first case, the horizontal walls have zero ply angles. For vertical
walls the laminac in the outer half thickness have zero ply angles while the
laminae in the inner half thickness are all oriented at the same ply angle A, .
A positive A, implies that fibers are oricnted toward the top wall of the blade.
In the sccond case, the vertical walls have zero ply angles. For horizontal walls
the laminae in the outer half thickness have zero ply ang]és while the laminae
in the inner half thickness are all oriented at the same ply angle A, . A positive

A, implics that fibers are oricnted toward the leading edge of the blade.
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Note that varying the ply angles A, and A, influences the dircct stiffness
terms, as well as a number of coupling terms associated with the modulus
weighted scctional constants. When A, is varied, some of the coupling terms
influenced are associated with the sectional constants EAB,, EAB, and GA
which represent the cffects of lag-torsion, torsion-shear, axial-torsion and
axial-shear couplings. The variation of A, influences coupling terms associated
with sectional constants such as EAB, and G,A which represent the effects of
flap-torsion, torsion-shear and axial-shear couplings.

Figurc 9.1 shows the natural frequencics of the first six modes as a function
of A, for variations in A, from 0° to 90°. The results indicate that the lowest
three frequencies (first flap, first lag and sccond flap) are not very scnsitive to
the variations in the ply orientation. The torsional frequency increases initially
and rcaches a maximum value of 5.5/rev around 30° ply angle and then de-
creases with further increase in the angle of ply orientation. The second lag and
the third flap frequencies decrease initially and reach asymptotic valucs be-
yond 45° ply orientation. A similar trend is evident for variation of natural
frequencies with ply-orientation in horizontal wall, as shown in Fig. 9.2. In
this case, the variation in frequencics is more pronounced than that observed
in Fig. 9.1. The torsional frequency reaches a maximum value of 6.5/rev at

30° ply angle in horizontal wall.

9.1.1.2 Two-cell Composite Blade.
Results illustrating the behavior of a soft-in-plane, hingeless composite

blade having a two-cell type cross section are presented next. The two-cell
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cross-scction was sclected such that the fundamental natural frequencies for
the bascline configuration arc similar to thosc associated with a typical heli-
copter bladc. Figure 7.1 shows the two-dimensional finitc clement model em-
ployed for the composite cross-section analysis from which the sectional
propertics of the cross-scction were obtained. The leading cdge has a scmi-
circular shape with a radius of 1.2” ; and the straight portion has a total Iength
of 6”. Thc intcrnal wall is located 2.8” behind the leading cdge; and all wall
thicknesses are 0.1”. The baseline configuration parameters for this blade are
shown in Tablc 9.1 where the material constants correspond to glass/epoxy
typc compositc material. For convenience, it is assumed that the blade has
uniform spanwise propertics, however, t'hc analysis developed can represent
blades with arbitrary mass and stiffness variation.

Natural frequencies are calculated for two cases. In the first case, the
laminac in the middle vertical wall and the inner half of the rear vertical wall
arc oricnted at ply angle A, while the remaining walls have zero ply angles.
In the second case, the laminae in the inner half of the horizontal walls are
oricnted at ply angle A, whilc the remaining walls have zcro ply angles.

The variation of natural frequencies of the two-cell composite blade as a
function of A, and A, are depicted in Figures 9.3 and 9.4, respectively. It is
evident from these figures that the lowest three natural frequencics are not in-
flucnced by variations in ply orientation; the first torsional frequency increases
initially and then decreases with increase in the angle of ply orientation. In
general, for the two-ccell configuration, the natural frequencies remain virtually

unchanged during the variation of the ply-orientaion in either the vertical wall
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TABLE 9.1
Bascline configuration for the two-cell composite rotor blade

Fundamental, coupled rotating natural frequencies:

w,, = 0.765
wpy = 1.096

Wy = 3.356

y =50 ¢/R = 0.06

¢ = 0.076 B =00
a=57 c,, = 0.005
Cyo = 0.01 B=4

k.,/R = 0.004 R = 250
Koo/R = 0.02439 Q = 360 rpm

Tip length = 10% of the blade length.

Material constants:
E, = 6.2x 105 psi
Er=1.6x10% psi
G4+ =0.8x 10° psi
ver =0.25

or the horizontal wall. But on a rclative scale, the variation of ply oricntation

in the horizontal wall influences the natural frequencies more than that in the

vertical wall.

9.1.2 Effects of Tip Sweep and Anhedral

The influence of tip sweep and tip anhedral on the natural frequencies of
the two-ccll composite blade is shown in Figs. 9.5 and 9.6, respectively. The
swept tip, representing 10% of the blade length, is modeled with one element,

while the straight portion is modeled using four elements having equal length.
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It can be scen from Fig. 9.5 that tip sweep does not significantly infuence the
natural frequencics of the rotor blade. Only the first torsional frequency shows
an increasc with increasing sweep angle. Tip sweep can cither incrcase (this
study and Ref. R) or decrease (Ref. 12) the natural frequency of the rotor blade
in torsion. The physical reason for such bchavior is duc to the fact that tip
sweep increases both the torsional stiffness (tennis racquet effect) and the
torsional inertia. Depending on the relative increments in the stiffness and in
the inertia effects, torsional frequency can increase or decrease with variation

in sweep angle of the rotor blade.
Figure 9.6 presents the cffects of tip anhedral on the rotating natural fre-

quencies of the two-cell composite rotor blade. The influence of anhedral on

the natural frequencies is negligible.

9.2 AEROELASTIC STABILITY IN HOVER

The results in this section are divided into three parts: (1) results illustrating
the influence of tip sweep and anhedral for isotropic blades; (2) results for
single-ccll composite blades emphasizing the influence of ply orientation on
acroelastic stability; and (3) results for two-cell composite blades, emphasizing

the influence of ply oricntation as well as the combined effect of swecp and ply

oricntation on aeroclastic stability.
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9.2.1 Effects of Swept Tip

The cffects of tip sweep and tip anhcedral are presented for a soft-in-plane,
isotropic hingeless blade configuration. The blade is modcled using a total of
five finite clements. The swept tip, representing 10% of the blade Iength, is
modcled with onc clement, while the straight portion is modeled using four el-
cments having cqual length. Scven coupled rotating modes, including thrce
flap, two lag, one torsion and one axial mode, are used. The baseline config-

uration for the straight blade is given in Table 9.2.

TABLE 9.2
Bascline configuration for the isotropic rotor blade
Couplecd rotating natural frequencies:

wg = 1.125, 3.406, 7.622
w =0.731, 4.465

wq = 4.875

(kaJK P = 0.5259 a=2n
k.,/R = 0.0 Cyq = 0.01
kmo/R = 0.02 Cw = 0.005
y=235.35 B,=0.0

o =0.07 B=4

c/R = 0.055

Tip length = 10% of thc blade length.

Offsets of center of mass, tension center and aerodynamic center
from elastic axis are zero.

The tip sweep angle, A, , is varied between 0° and 40° in increments of 10°
each; similarly, the tip anhedral angle, A, , is varied between -20° and 20° in

increments of 10° each. The thrust coefficient of the rotor, C; , is maintained
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at a constant value of 0.005 which is cqual to the weight cocfficient, Cy , by
using a coupled trim-acroclastic responsc analysis.

Figures 9.7 through 9.10 illustrate the cffect of tip sweep on the acroclastic
stability of the blade. Figures 9.7 and 9.8 show the imaginary and real parts,
respectively, of the complex cigenvalucs for hover as a function of A, , for the
bascline configuration. The notation L, F and T is used to dcnote lag, flap and
torsion modcs, respectively. The imaginary part of the cigenvalue represents
the frequency while the real part of the eigenvalue represents damping of the
mode. Tip sweep introduccs flap-torsion coupling in the blade. However, for
this basclinc configuration, the frequencics of the flap and torsion modes are
well scparated, thercfore varying the tip sweep angle docs not have a signif-
icant influcnce on the blade stability. Figure 9.7 shows that the frequencics
of the first five modes arc insensitive to A, while the frequency of the third flap
mode increases slightly with A, . The damping in the first flap, first lag and
first torsion modes decrcase slightly with A, but no instability is induced by
tip sweep, as shown in Fig. 9.8. Figures 9.9 and 9.10 show thc imaginary and
real parts, respectively, of the cigenvalues as a function of A, , for a config-
uration with a torsional frequency of wq, = 3.263[rev which is closc to the
sccond flap frequency of wg, = 3.406/rev . Figure 9.9 shows that frequency
coalescence has occurred between the first torsion and second flap modes over
a large portion of the tip sweep range being investigated (approximately be-
tween 5° and 30°). The effect of this frequency coalescence on the stability is
evident in Figure 9.10 where one of the modes is stabilized while the other

mode is destabilized. The second flap mode becomes unstable for A; between
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9° and 34°. Thc sccond lag modc also cxhibits a slight instability. This insta-
bility is not associated with frequency coalescence and can be removed by a
small amount of structural damping.

Figures 9.11 through 9.14 illustrate the effect of tip anhcdral on the
acroclastic stability of the blade. Figures 9.11 and 9.12 show thc imaginary
and rcal parts, respectively, of the cigenvalues for hover as a function of the
anhcdral angle, A, , for the basclinc configuration. Tip anhedral introduces
lag-torsion coupling in the blade. The frequencies of the first torsion and sec-
ond lag modes for the bascline configuration are wy, = 4.875/rcv and
wp, = 4465[rev , respectively, which arc rcasonably scparated from cach
other. These two modes exhibit a mild frequency coalescence ncar A, =0 in
Fig. 9.11. This frequency coalescence has some destabilizing effect on the first
torsion mode when A, > 0° or A, < —9° and some stabilizing effect on the
sccond lag mode when A, > 0°, which is evident in Fig. 9.12. Figures 9.13 and
9.14 show the imaginary and recal parts, respectively, of the cigenvalues as a
function of A, , for a configuration with a torsional frequency of
wr, = 4.340/rev which is close to w, (= 4.465[/rev) . The cffect of lag-torsion
coupling due to tip anhedral is more pronounced for this blade configuration
since Fig. 9.13 exhibits some apparent frequency coalescence over a wider
range, while Fig. 9.14 exhibits a more significant stabilizing effect on the sec-
ond lag mode and destabilizing effect on the first torsion mode for A, # 0° .
The first torsion mode remains stable within the range of anhedral angles

considerced.
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9.2.2 Single-cell Composite Blade

The acroclastic behavior of a hingeless, single-cell, stiff-in-plane, composite
blade configuration is considered next. This configuration has also been de-
scribed in detail in the last section. Eigenvalues of the stability problem are
computed for two cases, having symmectric configurations, where the ply lay-
ups on opposite walls arc identical. In the first case, the horizontal walls have
zero ply angles. For vertical walls the laminac in the outer half thickness have
zero ply angles while the laminae in the inner half thickness are all oriented
at ply angle A, . In the sccond case, the vertical walls have zcro ply angles.
For horizontal walls the laminae in the outer half thickness have zcro ply an-
gles while the laminac in the inner half thickness are all oricnted at ply angle
A, .

Figures 9.15 through 9.17 show the root locus plots of the complex
cigenvalues as a function of A, for first lag, first flap and first torsion modecs,
respectively, at thrust levels Cp = 0.005 (solid lines) and C; = 0.0025 (dotted
lines). The ply angle A, , which is the parameter given on the plots, is varied
from 0° to 90° in both positive and negative directions. Notc that the ply an-
gles A, for 90° and -90° have the same configuration with fibers oriented ver-
tically, perpendicular to the blade axis, for the inner half of the vertical walls.
Figure 9.15 shows that a positive ply angle A, destabilizes the first lag mode,
while a negative A, stabilizes the first lag mode. Since the first lag mode is not
heavily damped, the destabilizing effect on this mode duc to positive A, can
be significant for certain ply angles. The combined effect of having a positive

ply angle A, between 10° and 28°, with a low thrust level C; = 0.0025 causes
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instability in the first lag mode, as illustrated in Fig. 9.15. Figure 9.16 shows
that a positive A, , up to approximatcly 45°, stabilizes the first flap mode
slightly. A positive A, greater than 45° or a ncgative A,, can destabilize the
first flap modec slightly. Variation of A, has littic influence on the stability of
the first torsional mode, as cén be scen from Figure 9.17. Since the flap and
torsion modecs arc heavily damped, the cffect of A, on the stability of these two
modoes is less significant.

Figures 9.18 through 9.20 show the root locus plots of the cigenvaluces as a
function of A, for the first lag, first flap and first torsion modes, respectively,
at a constant thrust cocfficicnt C; = 0.005 . Figure 9.18 shows that a ncgative
Ay, up to approximatcly -60°, destabilizes the first lag mode, while a ncgative
Ay, beyond -60° or a positive A, stabilizes the first lag mode. For the first flap
and first torsion modes, the variation of ply angle A, has more influence on the

frcquency than on the stability, as cvident from Figs. 9.19 and 9.20.

9.2.3 Two-cell Composite Blade

Results illustrating the aeroelastic behavior of a composite soft-in-plane
blade having a two-cell type cross section are presented next. The configura-
tion of the blade has been described in detail in the last section. Stability re-
sults are first calculated for a swept-tip blade with zero ply angles and for a
straight blade with ply angle variation in either the vertical walls or the hori-

zontal walls. Subsequently, the combined effects of tip sweep and ply orien-
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tation on blade stability arc determined. The thrust cocfficient Cr is
maintained at a constant valuc of 0.005 for all cases.

Figures 9.21 and 9.22 illustratc the behavior of the imaginary and rcal
parts, respectively, of the cigenvalues associated with the various modes used
in the analysis as a function of the tip sweep angle A,, for the basclinc con-
figuration which has zcro ply angles. For this cas, the bladc cxhibits a fre-
quency coalescence induccd by sweep between the second flap and first torsion
modes that is evident in Figure 9.21. This produces a stabilizing effect on the
sccond flap mode while destabilizing the first torsion modc, as depicted in
Figure 9.22. Figure 9.22 shows that the frequency coalescence for this two-ccell
case induces a mild instability in the first torsion mode for sweep angles be-
tween 14° and 22°.

For the straight blade with ply angle variations, two cascs are analyzed. In
the first case, the laminae in the middle vertical wall and the inner half of the
rear vertical wall are oriented at ply angle A, while the remaining walls have
zero ply angles. In the second case, the laminae in the inner half of the hori-
zontal walls are oriented at ply-angle A, while the remaining walls have zero
ply angles. Figures. 9.23 through 9.25 show the root-locus plots of the
cigenvalues as a function of the ply angle A, for first lag, first flap and first
torsion modes, respectively. Figure 9.23 indicates that a positive A, ,ora
negative A, beyond -60°, destabilizes the first lag mode, while a negative A,
up to -60° stabilizes the mode. The effects of the ply angle A, variation on the
first flap and first torsion modes are less significant, as illustrated in Figs. 9.24

and 9.25.
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Figures 9.26 through 9.29 show the root locus plots of the cigenvalues as a
function of the ply angle A, for the first lag, first flap, first torsion and sccond
flap modcs, respectively, for the straight blade case (solid lines) and for the
swept tip case with A= 20° (dotted lincs). Figure 9.26 shows that a positive
Ay, or a ncgative A, beyond -50° destabilizes the first lag mode, while a nega-
tive A}, up to -50° stabilizes thc mode. The first flap mode stability is only
slightly influenced by the variation of A,, as illustrated in Fig. 9.27. A tip
sweep of 20° has a destabilizing effcct on both the first lag and first flap
modcs, but no instability is induced in these modes, as depicted in Figs. 9.26
and 9.27. Figurc 9.28 shows that for the straight blade casc, the damping in
the first torsion mode decreascs for positive Ay, , however, the modc remains
stable. For the case of 20° sweep, the blade has a mild instability in the first
torsion mode at zero ply angle, which has also been shown in Fig. 9.22. The
first torsion mode is further destabilized for ply angle A, between 0° and 12°,
however, it becomes stable for Ay, greater than 13° or for a negative ply angle
Ay, beyond -1°, as illustrated in Fig. 9.28. Therefore, the instability causcd by
tip sweep can be removed by selecting an appropriate ply orientation in com-
posite blades. Introducing a tip sweep of 20° destabilizes thce first torsion mode
and stabilizes the second flap mode for all ply angles, when compared to the

casc of a straight blade, as shown in Figs. 9.28 and 9.29, respcctively.
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Chapter X
AEROELASTIC BEHAVIOR'IN FORWARD FLIGHT

This chapter explores the acroclastic response, stability and loads in for-
ward flight of composite rotor blades with straight and swept tips. Numerical
results illustrating the influence of composite ply orientation, tip sweep and
anhedral on trim, hub loads, blade response and stability arc presented. The
purposc of thesc calculations is twofold. First, to gain a bctter physical
understanding on the acroelastic stability and response of composite blades
with swept tips. Second, these results serve as a necessary precursor for the
bladc optimization studics which arc conducted in the following chapter.

The results presented in this chapter are for a four bladed hingeless rotor,
in which cach bladc is assumed to be of composite construction, with uniform
spanwise propertics. Note, that uniform properties are assumed here only for
convenicnce, the analysis and associated computer program are capable of re-
presenting configurations with arbitrary cross sectional variations in the
spanwisc dircction. For completeness a concise description of the treatment
of a nonuniform blade configuration is provided next. The nonuniform por-
tion of the blade is divided into several sub-segments, such that approximately
lincar variation of the spanwise properties in each sub-segment can be as-
sumecd. A two-dimensional cross sectional analysis is then performed for each
cross section corresponding to an end point of a sub-segment. At a beam ele-

ment Gaussian point which is in a sub-segment of this portion of the blade, the
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scctional propertics arc obtained from that of the cnd cross scctions of the
sub-scgment by lincar interpolation. Despite the variations inside the clement,
the assembly process of the various elements assumes that the clastic axis is a
straight line for the straight portion of the blade. This is justifiable because the
nonuniform inboard scgment of the blade (approximately 25% of the blade
length; sce Scc. 2.1. Assumption 9) is rclatively rigid; its deflections will be
rclatively small, and the inertial and acrodynamic loads in this blade scgment
are also low; and thercfore approximations introduced for this blade portion
will have a negligible cffect on the global blade behavior.

The composite blade cross-sectional structure is represented by a two-cell
laminated box becam, as shown in Figure 7.1. The leading cdge has a semi-
circular shape with a radius of 1.2” while the straight portion has a total length
of 6”. The internal vertical wall is located 2.8” behind the leading edge. All
the walls have a thickness of 0.1

It should be noted that, throughout this study, the term “swept tip” is used
to dcnotc a combination of sweep and anhedral. A parametric study of the
influence of ply oriecntation and swept tip on the trim, hub loads, bladc re-
sponsc and stability was conducted by considcring four cascs. The first two
cascs arc for a straight blade with varying ply orientations in either the hori-
zontal or vertical walls; while for the last two cases the ply angles arc assumed
to be zero and 10% outboard portion of the blade expericnces varying amounts
of tip sweep or anhedral. In the first case , the laminate associated with the
inner half of the horizontal walls is oriented at ply angle A, , while the re-

maining walls have zero ply angles. In the second case , the laminate in the
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internal vertical wall and the inner half of the rear vertical wall is oricnted at
ply angle A, whilc the remaining walls have zero ply angles. The ply angle in
the leading cdge semi-circle is always set at zcro value. The principal rcason
for this assumption is convenicnce. Otherwise, the two-dimensional cross sec-
tional analysis has to be used in an unwicldy manner to account for changes
in the ply oricntation in the semi-circular lecading edge portion of the blade
cross-scction. A positive A, implies that the fibers are oricnted toward the top
wall of the blade and for positive A,, the fibers are oriented toward the leading
cdge of the blade. In the third case , the blade has a tip sweep with sweep
angle A, , positive for backward sweep. In the fourth case , the blade has a
tip anhedral with anhcdral angle A, , positive upward. The baseline config-
uration represents the case where Ay, A,, A and A, are all equal to zero. The
propertics of the baselinc blade configuration are given in Table 10.1.

The acroclastic responsc and stability calculations werc performed using
three flap, two lag, onc torsional and one axial modes. Five elements, four for
the straight portion and one for the swept tip, were used to model the blade.
Five harmonics (N,; = 5) were used in the harmonic balance solutions so as to
accurately capture the 4/rev hub loads. The influence of composite ply orien-
tation and swept tip on trim, hub loads, blade aeroelastic response and stabil-

ity were all computed for an advance ratiou = 0.3.
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TABLE 10.1
Bascline configuration for the two-cell soft-in-plane composite rotor blade
Coupled rotating natural frequencies:

w, = 0.765, 4.666
wy = 1.096, 3.110, 6.554

wp = 3.821

=50 ¢/R = 0.06
o = 0.076 B, =00
a=57 C,, = 0.005
Cyo = 0.01 B=4
k../R = 0.004 R = 250"
kno/R =0.0211 Q = 360 rpm
Xpe/R = 0.0 Zeo/R = 0.50
XpofR = 0.0 ZeAlR = 0.25

fCyqinR2 = 0.01
Tip length = 10% of the bladc length.

Material constants:
E_ =6.2 x 10 psi
E;r=1.6x10% psi
G r=08x10° psi
vir=0.25

10.1 BLADE RESPONSE

Figurcs 10.1 through 10.12 show the effects of A, , A, , A, , and A, , on
blade tip deflection in lag, flap and torsion, respectively, during one revolution.
In each figure, nondimensional tip deflections corresponding to three repre-
sentative values of the parameter being studied are shown as a function of the
blade azimuth. The selected ply angles are 0°, 15° and -15° for both A, and
A,. For sweep the values of A are 0°, 10° and 20°; and for anhedral angle the

values 0°, 10° and -10° are used. For swept tip cases, where either A, or A, is
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the parameter, the nondimensional tip deflections shown in the figures are the
valucs at the junction between the straight and the swept tip portions, which
is located at 90% of the blade span, when measured from the root.

It is evident from Figs. 10.1 and 10.4 that variation of ply angles A, and
A, has only a slight influence on lag deflection. The flap deflection is insensi-
tive to variation in A, and A,, as depicted in Figs. 10.2 and 10.5. Figure 10.3
shows that a positive ply angle in the horizontal wall, A, = 15° , decreascs the
torsional tip deflection (makes it more negative), while a negative ply angle,
A, = —15°, increascs the torsional tip deflection (makes it more positive). On
the other hand, Figure 10.6 shows that a positive ply angle in the vertical wall,
A, = 15°, incrcascs the torsional tip dcflection, while a ncgative ply angle,
A, = —15°, decreascs the torsional tip dcflection.

Figures 10.7 through 10.9 show the effect of sweep on blade tip dcflection
in lag, flap and torsion, respectively. It is evident that positive tip sweep, ¢.8.,
A, = 10°,20°, incrcases (make it less negative) the lag deflection, but decreases
(make it morc negative) the torsional deflection. The flap deflection is not in-
fluenced by A,. The influcnce of the anhedral angle A, on the lag deflection
varics along the blade azimuth, as shown in Fig. 10.10. A positive anhedral
angle A, = 10° increases (makes it less negative) the lag deflection for azimuth
angles 0° <y <90° and 250° <y < 360° , while decreascs (makes it more
ncgative) the lag deflection for azimuth region 90° < ¥ <250°. A negative
anhedral angle A, = —10° has the opposite effect on the lag deflection when

compared to the case for A,=10°. Figure 10.11 shows that a positive
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anhcdral angle A, = 10° deccrecases the flap deflection around the azimuth,

while a ncgative anhedral angle A, = —10° increases the flap deflection.

10.2 TRIM VARIABLES

Figurcs 10.13 through 10.20 show the trim variables as a function of onc
of the parameters A, , A, , A, , or A, . Bladc pitch input angles, including
collective pitch, cyclic cosine and cyclic sine, are prescnted in Figs. 10.13,
10.15, 10.17 and 10.19. While rotor inflow ratio and anglc of attack are pre-
sented in Figs. 10.14, 10.16, 10.18 and 10.20. The ply angles A, and A, arc
varicd from -90° to +90°. The tip sweep angle A, is varicd between 0° and
40° while the tip anhedral angle A, is varied between -20° and 20°. Figures
10.13 and 10.14 show the cffect of A, on the trim variables. It is evident that
only collective pitch angle is significantly influenced by the variation in the ply
angle Ay, with the most pronounced cffect evident between -30° and +30°.
The recason for the sensitivity of the collective pitch angle can be easily under-
stood by simultaneously cxamining the torsional response of the blade and the
collective pitch angle. As discussed in the previous section, Fig. 10.3 shows
that a positive ply angle, A, = 15° , decreases the mean value of torsional re-
sponse (makes it more negative) relative to the baseline case. In order to
maintain a fixed thrust level, this decrease in the mean value of the torsional
deformation of the blade must be accompanied by a corresponding increase in
the collective pitch angle, as shown in Fig. 10.13. Similarly, for the case

Ay, = —15° the mean value of the torsional response increases (less negative or
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more positive) relative to the bascline case (Fig. 10.3) and the corresponding
collective pitch angle shows an reduction from the baseline case (Fig. 10.13).
Figures 10.15 and 10.16 show the cffect of A, on the trim variables. Again,
only the collective pitch is influenced by the variation in A, , and the physical
cxplanations provided for variations due to Ay, are also applicable to this case.
Figurcs 10.17 and 10.18 show the cffect of tip sweep on the trim variables.
The collective pitch angle increases with sweep and the absolute value of the
cyclic pitch angles, as well as the rotor angle of attack, also show slight in-
creases with sweep. Figures 10.19 and 10.20 show the effect of tip anhedral
on the trim variables. The collective pitch angle, rotor angle of attack and in-
flow ratio increase with both tip anhedral and dihedral; with rotor angle of
attack, oy , being particularly sensitive to variation in A, (Fig. 10.20). The

cyclic cosine increases with tip anhedral and decreases with tip dihedral.

10.3 VIBRATORY HUB LOADS

Figures 10.21 through 10.28 show the absolute value of the 4/rev vibratory
hub shears and moments as a function of one of the the paramecters A, , A, ,
A or A, . Results illustrating the influence of ply orientation A, on the 4/rev
vibratory hub shears and moments are shown in Figs. 10.21 and 10.22, re-
spectively. The variation in longitudinal and lateral shears is about 17% to
24%, from the baseline configuration, while the vertical shear is less sensitive
to the variation in A, (about 12% from the baseline). The roll and pitch mo-

ments decrease with A, up to 28% relative to the baseline around Ay, = 90° .
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The maximum variation in yaw momcnt consists of an incrcasc of about 34%
for A, > 60° . Results illustrating the influence of ply oricntation A, on the
4/rev vibratory hub shears and moments are shown in Figs. 10.23 and 10.24,
respectively. The hub shears are less sensitive to A, than to A,. The roll and
pitch moments arc insensitive to A, while the maximum variation in yaw mo-
ment is represented by an increase of about 21%, for A, ncar 90°. Recsults il-
lustrating the influence of tip sweep A on the 4/rev vibratory hub shears and
momecents arc shown in Figs. 10.25 and 10.26, respectively. Tip sweep reduces
both hub shears and moments, with the hub shears being more sensitive to the
‘variation in tip sweep angle. Results depicting the influence of tip anhedral
A, on the 4 /rev vibratory hub shears and moments are shown in Figs. 10.27
and 10.28, respectively. Most components of hub shears and moments in-
crease with both anhedral and dihedral. The only exception is the vertical

shecar, . which incrcases with dihedral but is relatively insensitive to anhedral.

10.4 BLADE STABILITY

Figures 10.29 through 10.35 show the real part of the characteristic expo-
nents, which represent a measure of blade modal damping, or stability, as a
function of one of the parameters A, , A, , A;,or A,. The cffect of varying
the ply oricntation A, on the aeroeclastic stability of the lag mode is shown first
in Fig. 10.29, because lag is usually the critical mode in hingeless rotor stability
studics. It is evident from Fig. 10.29 that the stability of the lag mode is sig-

nificantly influenced by the ply angle variation. For A, between -20° and
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+20°, the positive ply angles decrease amount of damping associated with the
lag modc, whercas the negative ply angles substantially incrcasc the level of
damping in lag. Figure 10.30 indicates that the first flap modec stability is in-
sensitive to A,. Results illustrating the effect of A, on the acroelastic stability
of the first torsion and sccond flap modes are presented in Fig. 10.31. It is
cvident that the stability of the first torsion and second flap modes is virtually
unaffected by the variation in A,. The cffect of varying the ply oricntation
A, on the acroelastic stability of the lag mode is shown in Fig. 10.32. It is ev-
ident from Fig. 10.32 that the stability of the lag mode is significantly influ-
enced by the ply angle variation. For A, between -20° and +20°, the positive
ply angles decrease the lag mode dampiné, whereas the negative ply angles in-
crcase the lag mode damping substantially. The stability of the first two flap
modes and the torsion mode is inscnsitive to the ply angle A,, as depicted in
Fig. 10.33. Results illustrating the influcnce of the tip swecp angle A, on the
acroclastic stability of the first six modes are shown in Fig. 10.34. The nota-
tion L, F and T is used to denote lag, flap and torsion modes, respectively.
The real part of the characteristic exponent associated with the first lag and
first torsion modes decreascs while it increases for the second lag modc with tip
sweep, but is fairly insensitive to the variation of A, in the flap modes, as ev-
ident from Fig. 10.34. It should be emphasized that while the curves repres-
cnting the real part of the characteristic exponent associated with the first and
second lag modes, in Fig. 10.34, appear to be flat, the level of damping for
these two modes is at least an order of magnitude smaller than that of the

other modes shown in Fig. 10.34, and thus the variation of the damping level
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in thesc modes is quite significant. Results depicting the influence of the tip
anhedral angle A, on the acroclastic stability of the first six modes arc pre-
scnted in Fig. 10.35. The rcal part of the characteristic exponent associated
with the first lag mode increases with anhedral and decrcases with dihedral.
The level of damping for the second lag mode increases while that for the first
torsion mode dccrcases with both anhedral and dihedral. The mild instability
in the sccond lag mode, present in Figs. 10.34 and 10.35, can be removed by
introducing a small amount of structural damping, in this particular mode.
The basclinc blade configuration given in Table 10.1 has a rotating natural
torsional frequency of 3.821/rev, which is well separated from the second flap
frequency of 3.110/rev. By increasing thc mass moment of inertia k,,,/R to
0.02439, the torsional frequency becomes 3.356/rev which is now close to the
sccond flap frequency. Results for blade stability were also calculated for this
modified configuration. The results illustrating the influence of A, on the
acroclastic stability of the first torsion and second flap modes are presented in
Fig. 10.36. The rcal part of the characteristic exponents indicate that the
torsional mode undergoes a significant reduction in damping levels, while the
second flap mode displays a significant increase in damping levels, around
A, = 15° This is a frequency coalescence phenomenon due to the flap-torsion
coupling introduced by A,. Results presented in Fig. 10.37 illustrate the in-
fluence of the tip sweep angle A; on the aeroelastic stability of the first six
modes. The frequency coalescence phenomenon between the first torsion and

second flap modes is present over a wide range of sweep angle A, , primarily
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duc to the flap-torsion coupling introduced by tip sweep. The first torsion

mode becomes marginally stable around Ay = 15° to 20°.

10.5 COMBINED EFFECT OF SWEEP AND PLY ORIENTATION

Results showing the combined cffect of tip sweep and composite con-
struction of blade were calculated for A, = 0° 15° and -15° at various tip
sweep angles, A,, between 0° and 40°. The ply angle in the vertical wall, A,,
and the anhedral angle, A,, were sct to zero in these calculations. The sclection
of this particular combination of paramcters was influenced by results for the
4/recv hub loads and blade stability described in previous scctions of this
chapter. Tip sweep reduces most vibratory hub load components, as previ-
ously illustrated in Figs. 10.25 and 10.26. A value of A, = 15° produces a
modest reduction in the 4/rev hub loads at the expense of some lag damping
levels; while a A, = -15° produces an increase in lag damping levels; with
slightly incrcased 4/rev hub loads; as can be seen from Figs. 10.21, 10.22 and
10.29.

Figures 10.38 through 10.40 show the 4/rev longitudinal, lateral and vertical
shears, respectively, as a function of A, for A, = 0° (baseline), 15° and -15°.
The bascline cases in Figs. 10.38 through 10.40 undergo a reduction in 4/rev
hub shears with increasing tip sweep, as was indicated in Fig. 10.25. For lon-
gitudinal and vertical shears, the additional effect due to the presence of A,
= 15° or -15° with increasing A, is not favorable compared to the bascline

case, as evident from Figs. 10.38 and 10.39. For vertical shears the additional
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cffect due to A, = 15° or -15° compared to the baselinc case is unfavorable for
lower sweep angles, but becomes bencficial for sweep angle A, greater than
35°, as can bec scen from Fig. 10.40. Figures 10.41 through 10.43 show the
4/rev rolling, pitching and yawing moments, respectively, as a function of A,
for A, = 0° 15° and -15°. The basclinc cases in Figs. 10.41 through 10.43
undcrgo a slight to modcrate reduction in 4/recv hub moments with increasing
tip sweep, up to A, = 25°, as was indicated in Fig. 10.26. Thc additional cf-
fect duc to A, = 15° or -15°, compared to the bascline case, is gencrally un-
favorable for all 4/rcv hub moment components. Figure 10.44 shows thc real
part of the characteristic exponents for the first lag modc as a function of A,
for A, = 0° (bascline), 15° and -15°. The first lag mode damping level de-
crcascs with increasing tip sweep angle for all three cases, as evident from Fig.
10.44. For the straight blade case, A, = 15° reduces the first lag mode
damping level by 25%, while A, = -15° increases the first lag mode damping
level b‘y approximately 25%. When sweep is introduced, these effects diminish
with increasing tip sweep angle A,. It is obvious, from the results presented in
Figs. 10.38 through 10.44, that the combined effect of swept tip and composite
construction of the blade cannot be predicted by superposition of the respec-
tive individual cffects; because the problem is inherently nonlinear. The
mcchanism associated with the combined effect is subtle and difficult to
quantify preciscly based on the results generated so far. However the
parametric study presented in this chapter provides a valuable precursor to
structural optimization studies where the proper combination among these

parameters, for vibration reduction, is selected by an optimizer.
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Chapter XI
STRUCTURAL OPTIMIZATION RESULTS

This chapter presents a structural optimization study conductcd by com-
bining the acroclastic analysis capability developed in this study with thc DOT
structural optimization package[106]; to design compositc rotor blades with
swept tips for low vibration levels in forward flight, using composite ply
orcintation in the horizontal and vertical walls, and tip sweep and anhedral
angles as design variables.

Three hingeless blade configurations with a two-cell cross scction are inves-

tigated. The first configuration is a soft-in-plane blade with its bascline con-

figuration shown in Table 10.1. Details of this blade configuration has bcen

described in Chapter 10. The sccond configuration is the same as the first

configuration cxcept that its torsional frequency is modified from 3.821/rev to

3.356/rev and it was also described in Chapter 10. The third configuration is

a stiff-in-plane blade with a cross sectional shape similar to that of the soft-
in-planc blades (Fig. 7.1). For the stiff-in-plane blade, the lcading edge semi-
circle has a radius of 0.8” while the straight portion has a total length of 6.2”.
The internal vertical wall is located 3.6” behind the leading edge; and All walls
have a thickness of 0.2”. The composite ply orientation is defined in the same
way as that of the soft-in-planc blade. The baseline configuration parameters
for this blade are shown in Table 11.1, where the material constan£s corre-

spond to graphite/cpoxy type composite material.
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TABLE 11.1
Bascline configuration for the two-ccll stiff-in-plane composite rotor blade
Coupled rotating natural frequencies:

w, = 1.454, 8.817
wy = 1.148, 3.654, 8.471

Wy, = 4.408
y =50 ¢/R = 0.06

¢ = 0.076 B. =00
a=57 c,, = 0.005
Cy = 0.01 B =4

k. /R = 0.0 R = 250"
Km/R = 0.0155 Q = 360 rpm
Xpc/R = 0.0 Zio/R = 0.50
Xea/R = 0.0 Ze AR =025

fCyfnR2=0.01
Tip length = 10% of the bladc length.

Matcrial constants:
E_=28.0x 10® psi
Er=2.5x 10° psi
Gl.T= l.OX 106 pSi
vir = 0.30

The aeroelastic response and stability calculations were performed using
three flap, two lag, one torsional and one axial modes. Five elements, four for
the straight portion and one for the swept tip, were used to model the blade.
Five harmonics (N, = 5) were used in the harmonic balance solutions so as to
accurately capture the 4/rev hub loads. All the computations involving for-

ward flight were carried out for an advance ratiog = 0.3.
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The two objective functions J, and J, defined by Eqgs. (7.8) and (7.9), re-
spectively, arc used for each of the three blade configurations and the values

of the various weighting factors, uscd in the calculations, are specificd below:

In the acroclastic stability constraints, a 0.5% structural damping is added to
the damping level associated with the sccond lag mode, so as to climinate the
slight instability which can occur in the second lag mode. This is accomplished
by an approximate approach described below, where the subscript j, used to
denote the j-th mode, is dropped for convenience. The eigenvalue obtained

from the stability calculation for the j-th mode is

A={+tiw
where the rcal part is approximated by

{=- Cd Wy
with &,, w, being the damping ratio and natural frequency, respectively, for the
j-th mode (4= c/c). When using a viscous type structural damping the ad-
ditional damping, a4, , added to the mode, can be expressed as a small per-

centage of the critical damping c. ; and the modified damping coefficient can

be written as

¢=c+ a4Cc = (Cd + ad)cc
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where ¢ represents the damping initially present in the mode, and the modified

damping ratio is given by
€4 =Clcc=E3+ ay
The real part of the cigenvaluc becomes
{'=-8d og=-g+agw,

and the change in the real part of the cigenvalue which is indicative of the

stability associatcd with the mode is:
Al=0~{=-0a40,

Since both ay and w, arc known quantitics, a small amount of structural
damping can bc conveniently added to a particular mode, by modifving the
real part of the cigenvalue associated with that mode.

The minimum acceptable damping level ¢, , defined in Eq. (7.7), is set to
0.01 for all modes, used in this study; for convenience. However one can
specify different values of ¢, for the various modes, as necded.

Initial designs for the two soft-in-plane blade configurations are chosen
bascd upon the experience gained from the parametric studies conducted for
these blade configurations, described in Chapters 9 and 10. For the first blade
configuration, the initial design was sclected to have the following values of the
design variables: Ay, = 15°, A;=20°, A, = A, = 0° ; which represents a design
with fairly low hub loads, and no significant reduction in aeroelastic stability
margins (sce Figs. 10.21, 10.22, 10.25 and 10.26). Note, that while parametric

studies cannot be used to determine the optimum design, they can provide
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useful information for sclecting a reasonable initial design; so that the number
of iterations required in the optimization process is reduced. Furthermore, the
bascline design has zcro values for the four design variables, while the initial
design is characterized by preassigned (usually nonzero) values of these design
variables.

The increment size (or step size) for the design variables, during the calcu-
lation of scnsitivity derivatives based upon the finite diffcrence approach, is sct
to 0.1° for all four design variables, A, A,, A, and A, . This choice is a result
of a study in which a varicty of increment sizes ranging from 0.001° to 1° for
cach dcsign variable were explored. It was found that the 0.1° increment size
produced thc most consistent and stabic behavior in the computation of the
sensitivity derivatives, among all increment sizes tested.

Figures 11.1 and 11.2 show the vibratory hub shears and moments, respec-
tively, corresponding to the first configuration with J; as the objective function.
The objective function J, is the sum of the 4/rev hub shear resultant and 4/rev
hub moment resultant for the four-bladed rotors considered in this study. The
results presented in Figs. 11.1 and 11.2 were obtained from the optimization
process after cight iterations. It is evident from Fig. 11.1 that the 4/rev hub
shears are reduced by 9% to 18% compared to the initial design, and by 32%
to 37% compared to the baseline case. The 4/rev hub moments are reduced
by 0.1% to 6% comparcd to the initial design, and by 25% to 28% compared
to the baseline, as illustrated in Fig. 11.2. The reduction in the objective
function J, is 9% from the initial design and 33% from the baseline case (sce

Table 11.2).

216



Figures 11.3 and 11.4 show the vibratory hub shears and moments, respec-
tively, corresponding to the first configuration when J, is the objective function
in the optimization process. The objective function J, consists of the 4/rev
vertical hub shear for the cases considered in this study. The 4/rev vertical
shcar is reduced by a remarkable 53% from the initial design; however, there
is no reduction in 4,rev longitudinal and lateral shears. Furthermore, the re-
duction in vertical hub shear is accompanied by a 1% to 12% incrcase of 4/rcv
hub moments compared to the initial design as depicted in Figs. 11.3 and 11.4.
When comparing the final design to the bascline configuration, onc can iden-
tify a reduction of 26% to 63% for 4/rev hub shears and 13% to 20% for 4/rcv
hub moments; as is cvident from Figs. 11.3 and 11.4.

The objective functions and the corresponding design variables in the
bascline, initial and optimum designs for the first configuration arc summa-
rized in Table 11.2.

The sccond blade configuration has a torsional frequency of 3.356/rev,
which is close to the second flap frequency of 3.110/rev.. The frequency
coalcscence phenomenon caused by either A, or A can reduce the damping
level in first torsion mode significantly, as has been shown in Fig. 9.28, for the
casc of hover; and in Figs. 10.36 and 10.37 for the case of forward flight. For
Ag=20° and A, between -1° and 13°, the first torsion mode exhibits a mild
instability in hover, as is evident from Fig. 9.28. The initial design for the
structural optimization of this blade configuration was chosen as
Ap=5°A;=20°, and A, = A,=0° ; so that it violates the constraint on

torsional stability and causes the design to be in the infeasible region. Since
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TABLE 11.2

Summary of optimization results for the first configuration

Bascline Initial Optimum
J, (E-3) 1.600 1.184 1.084
A, 0.0 15.0 5.55
A, 0.0 0.0 0.99
A, 0.0 20.0 294
A, 0.0 0.0 0.36
J, (E-4) 5.015 4.021 1.876
Ay, 0.0 15.0 -7.41
A, 0.0 0.0 3.74
A, 0.0 20.0 395
A, 0.0 0.0 0.81

All angles are in degrees.

the optimization problem includes aeroelastic stability constraints which have
to be satisfied before convergence, the final optimum design for this blade
configuration, determined by the optimization process and shown in Table
11.3, is acroclastically stable.

Figures 11.5 and 11.6 show the vibratory hub shears and moments, respec-
tively, corresponding to the sccond configuration, with J, as the objective
function. Compared to the initial design, the 4/rev hub shears are reduced by
only 2% to 5% while the 4/rcv hub moments are even incrcased by 0% to 2%,
resulting in a mere 2% reduction in J,. The reduction in the hub loads from

the bascline case is still significant: 39% to 44% for 4,rev hub shears and 27%
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to 33% for 4/rcv hub moments, as illustrated in Figs. 11.5 and 11.6. The ob-
jective function J; is reduced by 39% from the baseline case (sce Table 11.3).

Figurcs 11.7 and 11.8 show the vibratory hub shears and moments, respec-
tively, corresponding to the second configuration when J, is used as the objec-
tive function. The 4/rev vertical shear is reduced by 6%, however the 4.rev
longitudinal and latcral shears arc increase by 3% and 12%, respectively. The
4/rcv hub moments arc only slightly reduced by 1% to 3% compared to the
initial design. The reduction from the baseline is 34% to 40% for 4/rev hub
shcars and 29% to 35% for 4/rev hub moments, as is evident from Figs. 11.7
and 11.8. Thercfore, the 4/rev hub loads for the initial design of the sccond
configuration are alrcady ncar their minimum. Thus, the primary function of
the optimizer was to steer the initial design out of the infeasible region while
maintaining the objective function as low as possible.

The objcétivc functions and the corresponding design variables in the
bascline, initial and optimum designs for the second configuration arec sum-
marized in Table 11.3.

The structural optimization studics for the third blade configuration, which
is a stiff-in-plane blade, were conducted without the benefit of the parametric
studics which were available for the first two blade configurations. Therefore
the initial design was chosen to be identical to the baseline case, i.e.,
A=A=A,=A,=0°.

Figures 11.9 and 11.10 show the vibratory hub shears and moments, re-
spectively, corresponding to the third configuration with J, as the objective

function. The 4/rev hub shears are significantly reduced, by 46% to 67%;
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TABLE 11.3

Summary of optimization results for the second configuration

Bascline Initial Optimum
J, (E-3) 1.546 0.968 0.948
A, 0.0 5.0 3.85
A, 0.0 0.0 1.01
A, 0.0 20.0 27.0
A, 0.0 0.0 -0.10
J, (E-4) 4.822 3.047 2.873
A, 0.0 5.0 0.11
A, 0.0 0.0 8.54
A, 0.0 20.0 25.7
A, 0.0 0.0 3.49

All angles are in degrees.

however, the reduction in 4/rev hub moments is only 0% to 5% when com-
parcd to the basclinc case. The objective function J, is reduced by 31% from
the bascline case (sec Tablc 11.4). Figures 11.11 and 11.12 dcpict the vibratory
hub shears and moments, respectively, corresponding to the third configura-
tion with J, as the objective function. The 4/rev vertical shear achieves an in-
credible 99.4% reduction from the baseline case, however the 4/rev
longitudinal and lateral shears are increased significantly by 119% and 106%,
respectively. The 4/rev hub moments are also increased by 17%, 17% and

121% from the baseline case for rolling, pitching and yawing moments, re-

spectively.
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The objective functions and the corresponding design variables in the
basclinc and optimum dcsigns for the third configuration arc summarized in

Table 11.4.

TABLE 11.4

Summary of optimization results for the third configuration

Initial Optimum
J, (E-9) 9.515 6.544
Ay 0.0 -4.67
A, 0.0 -2.96
A 0.0 15.1
A, 0.0 14.1
J, (E-4) 4.091 0.026
A, 0.0 0.75
A, 0.0 -0.27
A, 0.0 27.4
A 0.0 -5.52

All angles arc in degrees.

From the three configurations considered in this study, one concludes that
in gencral the combined objective function J,, is a better choice than the second
objective function J, ; for vibration reduction studies for helicopter rotors. One
could construct a variety of objective functions by assigning proper weighting
factors in Eqs. (7.8) and (7.9). For most cases considered in this study, a typ-
ical case of optimization cycle converges in eight to fifteen iterations. The final
optimum designs, listed in Tables 11.2-11.4, show that the sweep angle has the
most important role among the four design variables considered in the opti-

mization process. Since the combined effect of ply orientation and swept tip
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is nonlincar, using the optimizer to sclect the proper combination of ply oricn-
tation, sweep and anhedral angles represents a cost cffective approach to
avoiding cxcessively large sweep angles, while enhancing the acroclastic stabil-

ity and frequency placement of the blade.
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Chapter XII
CONCLUDING REMARKS

The acroclasticity and structural optimization of compositc helicopter rotor
blades with swept tips has been studicd analytically. The acroclastic behavior
was cxplored using a new analytical model developed in this study, which is
capable of predicting the acroclastic behavior of composite rotor blades with
straight and swept tips in hover and in forward flight. This modecl is based on
a moderatc deflection theory and is particularly suitable for structural opti-
mization studics due to its computational efficiency.

The hingcless blade was modcled by beam type finite clements. A single
finitc clement was used to model the swept tip. The nonlincar equations of
motion for the finite clement model were derived using Hamilton’s principle.
Arbitrary cross-scctional shape, generally anisotropic matcrial behavior,
transverse shears and out-of-planc warping were included in the blade model.
The cross-sectional properties of the composite blade wcre calculated by a
scparate linear, two-dimensional analysis using a suitably modified version of
the analysis developed by Kosmatka[56], which is capable of calculating the
shear center location and the modulus weighted section constants of an arbi-
trarily shaped composite cross section. The aerodynamic loads were obtained
using Greenberg's theory with a quasi-steady assumption. Implementation of
the aerodynamic model into the computer code was based on an implicit for-

mulation such that more refined aerodynamic models can be incorporated in
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the analysis to replace the simple theory used in this study without an excessive
amount of additional effort. The trim and blade aeroclastic rcsponsc were
solved in a fully coupled manner, which is essential for the accuratc modecling
of the dynamic behavior of swept-tip rotor blades. In forward flight, the cou-
pled trim-acroclastic responsc solution was obtained using the harmonic bal-
ancc technique, and the lincarized stability was determined from Floquet
thcory.

Detailed studies were conducted on selected single-cell and two-cell com-
positc rotor blades with straight and swept tips to investigate the individual
and the combined cffect of sweep, anhcdral and compositc ply oricntation on
blade responsc and acroclastic stability in hover and in forward flight, as well
as on the vibratory hub shears and moments in forward flight.

The structural optimization study was conducted by combining the
acroelastic analysis capability developed in this study with the DOT structural
optimization package[106] to design composite rotor blades with swept tips for
low vibration levels in forward flight, using composite ply oricntations in the
horizontal and vertical walls, and tip sweep and anhedral angles as design
variables. Numerical results for four-bladed hingeless rotors with either a
soft-in-planc or a stiff-in-plane configuration and a two-cell composite cross-
section were presented.

The main conclusions obtained in this study are summarized below. They
should be considcred to be indicative of trends within the framework of the
assumptions upon which the acroclastic analysis was based. Also, they are

valid primarily for the limited number of configurations studied.
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The axial degree of freedom in the blade equations of motion must be
trcated such that the centrifugal force and Coriolis damping cffects are
properly included.

The fundamental rotating frequencies in flap and lag arc not sensitive
to the ply anglc variation. The torsional frequency increases with ply
angle initially; but after rcaching a maximum valuc (around 30° in this
study), it dccreases with further increase in the ply angle. Tip sweep
and tip anhedral have negligible influence on the fundamental flap and
lag frequencics; while the torsional frequency may increase or decrcase
with tip sweep.

Tip sweep can cause aeroelastic instability due to frequency coalescence
between the first torsion and second flap modes. This instability can
be removed by appropriate modification of the torsional stiffness of the
bladc. When frequency coalescence occurs between the first torsion and
sccond lag modes, both tip anhedral and dihedral have a stabilizing ef-
fect on the seccond lag mode.

Ply angle variation in composite blades has a significant influcnce on the
stability of the first lag mode both in hover and in forward flight. The
combined effect of low thrust condition and certain ply orientations can
causc blade instability in the first lag mode in hover.

Composite ply orientation has a significant influence on blade torsional
response, while flap and lag response of the blade are fairly insensitive

to ply angle variation.
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11.

12.

Variation of composite ply orientation has a pronounced influcnce on
the collective pitch setting while the other trim paramecters remain vir-
tually unaffected.

Tip anhedral has significant influence on lag response, cyclic cosine and
rotor angle of attack.

The damping in flap and torsion modes is inscnsitive to compositc ply
angle variation if frequency coalescence due to flap-torsion coupling is
avoided.

The variation of the vibratory hub loads due to changes in composite
ply oricntation is fairly modest and is less than 30% in most cases. Tip
sweep reduces most vibratory hub load components while tip anhedral
causes them to increase.

The combined cffect of swept tip and composite ply orientation cannot
be accurately predicted by superposition of the respective individual ef-
fects becausc the problem is inherently nonlincar. However a
parametric study is uscful for selecting the initial design for the opti-
mization process.

Bladc instability due to frequency coalescence introduced by swept tip
and composite ply orientation can be removed through structural opti-
mization with aeroelastic constraints.

The combined sum of the hub shear resultant and hub moment result-
ant is a better objective function than the 4/rev vertical shear alone for
the purpose of helicopter vibration reduction. Selecting 4/rev vertical

shcar as the objective function can result in remarkable reduction in this
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4/rcv hub load component, but at the expense of higher vibration level
in the other components.

13. Tip sweep has a significant influence on vibratory hub loads and plays
an important role in the optimization for vibration reduction. Proper
combination of composite ply oricntation and tip sweep and anhedral
anglcs, however, can be employed to reduce the need for excessive sweep
angles for vibration reduction, while simultaneously improving the
acroclastic stability and frequency placement of the blade.

These conclusions indicate that acroclastic tailoring of swept tip composite
blades, for stability enhancement and vibration reduction, is an arca _of re-

scarch which holds remarkable promise.
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Figure 1.1: Rotor blade with tip sweep and anhedral
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Figure 2.1: Nonrotating, hub-fixed coordinate system and rotating, hub-
fixed coordinate system
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Figure 2.2: Preconed, pitched, blade-fixed coordinate system
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Figure 2.4: Undeformed curvilinear coordinate system
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Figure 3.1: Deformation sequence and Euler angles
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Figure 4.1: Motion of an element on the deformed elastic axis during the
virtual displacement
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Figure 4.2: Finite elecment nodal degrees of freedom
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Figure 5.1: Components of blade velocity relative to the air
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Figure 5.2: Components of acrodynamic force acting on the blade
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Figure 5.3: Reverse flow region
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A.C.- Aerodynamic Drag Center of the Fuselage

Figure 6.1: Schematic of a four-bladed helicopter
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Figure 6.2: Forces on the helicopter in steady, level flight
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Figure 7.1: Finite element model for two-cell composite cross section
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Figure 7.2: Organization of the optimization process
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Figure 8.1: Nonlinear equilibrium position of isotropic blade in hover, as a
function of blade collective pitch.
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Figure 8.2: Imaginary part of hover eigenvalues of isotropic blade, as a
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Figure 8.4: Effect of axial mode on the nonlinear equilibrium position of
isotropic blade in hover. Analysis with substitution.
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Figure 8.7: Single-cell composite rectangular box beam
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Figure 8.9: Trim variables for soft-in-plane isotropic blade in forward
flight; pitch setting.
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Figure 8.10: Trim variables for soft-in-plane isotropic blade in forward
flight; inflow and rotor angle of attack.
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Figure 8.11: Trim variables for stiff-in-plane isotropic blade in forward
flight; pitch setting.

264



ISOTROPIC BLADE, STIFF-IN-PLANE

0.200+
- Yuan

-@- Millott

0.150-

0.100-

ROTOR INFLOW RATIO AND ANGLE OF ATTACK
=
&

ol
Q
o
o

)

1
.00 .10 .20 .30 40
ADVANCE RATIO

Figure 8.12: Trim variables for stiff-in-plane isotropic blade in forward
flight; inflow and rotor angle of attack.
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Figure 8.13: Blade tip response for soft-in-plane isotropic blade (u=0.30).
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Figure 8.14: Blade tip response for stiff-in-plane isotropic blade (u =0.30).
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Figure 8.15: Blade damping for soft-in-plane isotropic blade in forward
flight; first and second lag modes.

268



ISOTROPIC BLADE, SOFT-IN-PLANE

0.00 unstable
_ stable
b 4
b3
£ ~0.10+ = Yuan
i .o Millott
Q
=
[ 4]
& —0.20
fad
O
2 4 -
Z —0.30-
P
< 1F
& —0.40-
3

-0.50

T T T T T T T —
.000 .050 .100 .150 .200 .250 .300 .350 .400
ADVANCE RATIO

Figure 8.16: Blade damping for soft-in-plane isotropic blade in forward
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Figure 8.18: Blade damping for stiff-in-plane isotropic blade in forward
flight; first and second lag modes.

271



ISOTROPIC BLADE, STIFF-IN-PLANE

unstable
stable

- Yuon

—0.100+ .@- Millott

»
.‘.
.
.
...
.
o*
®

REAL PART OF CHARACTERISTIC EXPONENT
&
N
8
1

T T T T T T T |
000 .050 .100 .150 .200 .250 .300 .350 .400
ADVANCE RATIO

Figure 8.19: Blade damping for stiff-in-plane isotropic blade in forward
flight; first flap mode.
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Figure 8.21: The 4/rev hub loads for soft-in-plane isotropic blade in forward

flight; logitudinal shear and rolling moment.
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Figure 8.22: The 4/rev hub loads for soft-in-plane isotropic blade in forward
flight; lateral shear and pitching moment.
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Figure 8.23: The 4/rev hub loads for soft-in-plane isotropic blade in forward
flight; vertical shear and yawing moment.
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Figure 8.24: The 4/rev hub loads for stiff-in-plane isotropic blade in forward
flight; logitudinal shear and rolling moment.
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Figure 8.25: The 4/rev hub loads for stiff-in-plane isotropic blade in forward
flight; lateral shear and pitching moment.
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Figure 8.26: The 4/rev hub loads for stiff-in-plane isotropic blade in forward
flight; vertical shear and yawing moment.
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Figure 9.1: Natural frequencies as a function of ply angle in vertical wall for
single-cell composite blade.

280



— 1Ff1L|{s2F|=-1T{2L{€3F

NATURAL FREQUENCIES (/REV)

......................
..................................................................

0 I I L 1 L T I 1 |

0 10 20 3 40 5 60 7 80 90
HORIZONTAL WALL PLY ORIENTATION (DEG)

Figure 9.2: Natural frequencies as a function of ply angle in horizontal wall
for single-cell composite blade.

281



NATURAL FREQUENCIES (/REV)

—1L|-1F|se2F[=-1T[x2L]|e3F

----------------------------------------------------------------------------------------

L I I J 1 I 1 ) 1

0 10 20 30 40 50 60 70 8 90

VERTICAL WALL PLY ORIENTATION (DEG)

Figure 9.3: Natural frequencies as a function of ply angle in vertical wall for
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Figure 9.24: Root locus of first flap mode eigenvalues as a function of ply
angle in vertical wall for two-cell composite blade in hover.
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Figure 9.26: Root locus of first lag mode eigenvalues as a function of ply
angle in horizontal wall for two-cell composite blade in hover.
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Figure 9.27: Root locus of first flap mode eigenvalues as a function of ply
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Figure 9.28: Root locus of first torsion mode eigenvalues as a function of ply
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TWO-CELL COMPOSITE BLADE
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Figure 10.1: Effect of horizontal wall ply angle on blade tip response; lag
mode (u =0.30).
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Figure 10.2: Effect of horizontal wall ply angle on blade tip response; flap
mode (z=0.30).
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N
]

— baseline

=« hor. ply 15 deg

-
1

TIP DEFLECTION (NONDIMENSIONAL, E-02)
|
LA 4 S S 1 l - e 5 U .

+=-= hor. ply —15 deg

00000
....
.
*e
.
4 .
., .
. sa®e
........
‘‘‘‘‘
e, .
e
*a

- »
- -
.
ense?

L L T L ' L ¥ ' L] L 3 T L L] l L
0 60 120 180 240 300
AZIMUTH (DEG)

Figure 10.3: Effect of horizontal wall ply angle on blade tip response; torsion
mode (¢ =0.30).
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Figure 10.4: Effect of vertical wall ply angle on blade tip response; lag mode
(u=0.30).
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TWO-CELL COMPOSITE BLADE
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Figure 10.5: Effect of vertical wall ply angle on blade tip response; flap mode
(u=0.30).
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TWO-CELL COMPOSITE BLADE
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Figure 10.6: Effect of vertical wall ply angle on blade tip response; torsion
mode (u =0.30).
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Figure 10.7: Effect of tip sweep angle on blade tip response; lag mode
(u=0.30).
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Figure 10.8: Effect of tip sweep angle on blade tip response; flap mode
(1 =0.30).
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TWO-CELL COMPOSITE BLADE
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Figure 10.9: Effect of tip sweep angle on blade tip response; torsion mode
(1 =0.30).
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Figure 10.10: Effect of tip anhedral angle on blade tip response; lag mode

(1 =0.30).
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TWO-CELL COMPOSITE BLADE
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Figure 10.11: Effect of tip anhedral angle on blade tip response; flap mode
(u=0.30).
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TWO-CELL COMPOSITE BLADE
TIP RESPONSE, TORSION MODE (MU=0.3)
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Figure 10.12: Effect of tip anhedral angle on blade tip response; torsion
mode (u=0.30).
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TWO-CELL COMPOSITE BLADE
TRIM VARIABLES (MU=0.3)
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Figure 10.13: Effect of horizontal wall ply angle on trim variables; pitch
setting (u =0.30).
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Figure 10.15: Effect of vertical wall ply angle on trim variables; pitch setting
(u =0.30).
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Figure 10.17: Effect of tip sweep angle on trim variables; pitch setting
(u=0.30).
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TWO-CELL COMPOSITE BLADE
TRIM VARIABLES (MU=0.3)
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TWO-CELL COMPOSITE BLADE
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Figure 10.19: Effect of tip anhedral angle on trim variables; pitch setting
(1 =0.30).
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Figure 10.20: Effect of tip anhedral angle on trim variables; inflow and rotor
angle of attack (u=0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY HUB SHEARS (MU=0.3)
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Figure 10.21: Effect of horizontal wall ply angle on 4/rev hub shears
(1 =0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY HUB MOMENTS (MU=0.3)
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Figure 10.22: Effect of horizontal wall ply angle on 4/rev hub moments
(u=0.30).
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TWO-CELL COMPOSITE BLADE
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Figure 10.23: Effect of vertical wall ply angle on 4/rev hub shears
(k. =0.30).
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Figure 10.24: Effect of vertical wall ply angle on 4/rev hub moments
(u=0.30).
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Figure 10.25: Effect of tip sweep angle on 4/rev hub shears (u =0.30).
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Figure 10.26: Effect of tip sweep angle on 4/rev hub moments (u =0.30).

334



N
g

IR W T |
g

TWO-CELL COMPOSITE BLADE
VIBRATORY HUB SHEARS (MU=0.3)

+«+ longitudinal

T - - iateral
&
| -50 — vertical
[+ 4
g 1 .
0 1>~ .
@ 1 SO e e
2 1.00- SsQl e e P
> .......
[}
[v4
~.
-
=
(=]
z -
(=]
S ]
o-oo l L 1 L] I L '
-20 -10 0 10 20

Figure 10.27:
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Effect of tip anhedral angle on 4/rev hub shears (u =0.30).
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Figure 10.28: Effect of tip anhedral angle on 4/rev hub moments (u =0.30).
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Figure 10.29: Effect of horizontal wall ply angle on blade stability; first lag
mode (u =0.30).
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Figure 10.31: Effect of horizontal wall ply angle on blade stability; first tor-
sion and second flap modes (u =0.30).
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Effect of vertical wall ply angle on blade stability; first lag
mode (u =0.30).
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Figure 10.33: Effect of vertical wall ply angle on blade stability; first, second
flap and first torsion modes (u =0.30).
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Figure 10.34: Effect of tip sweep angle on blade stability for the first six
modes (u =0.30).
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Effect of tip anhedral angle on blade stability for the first six
modes (u =0.30).
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Figure 10.36: Effect of horizontal wall ply angle on stability of first torsion
and second flap modes, modified torsional frequency
(1 =0.30).
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Figure 10.37: Effect of tip sweep angle on blade stability for the first six
modes, modified torsional frequency (u =0.30).
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Figure 10.38: The 4/rev longitudinal hub shear as a function of tip sweep
angle, combined effect with ply orientation (u =0.30).
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Figure 10.39: The 4/rev lateral hub shear as a function of tip sweep angle,
combined effect with ply orientation (u =0.30).
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Figure 10.40: The 4/rev vertical hub shear as a function of tip sweep angle,
combined effect with ply orientation (u =0.30).
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Figure 10.41: The 4/rev hub rolling moment as a function of tip sweep angle,
combined effect with ply orientation (1 =0.30).
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Figure 10.42: The 4/rev hub pitching moment as a function of tip sweep
angle, combined effect with ply orientation (u=0.30).
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TWO-CELL COMPOSITE BLADE
VIBRATORY YAWING MOMENT (MU=0.3)
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Figure 10.43: The 4/rev hub yawing moment as a function of tip sweep an-
gle, combined effect with ply orientation (x =0.30).
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TWO-CELL COMPOSITE BLADE
LAG MODE STABILITY (MU=0.3)
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Figure 10.44: Real part of characteristic exponent of blade first lag mode as
a function of tip sweep angle, combined effect with ply orien-
tation (u =0.30).
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TWO-CELL COMPOSITE BLADE, FIRST CONFIGURATION
OBJECTIVE FUNCTION J1 (MU=0.3)
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Figure 11.1: The 4/rev hub shears corresponding to first blade configuration
(soft-in-plane) and first objective function (u =0.30).
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TWO-CELL COMPOSITE BLADE, FIRST CONFIGURATION
OBJECTIVE FUNCTION J1 (MU=0.3)
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Figure 11.2: The 4/rev hub moments corresponding to first blade configura-
tion (soft-in-plane) and first objective function (i =0.30).
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TWO-CELL COMPOSITE BLADE, FIRST CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=0.3)
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Figure 11.3: The 4/rev hub shears corresponding to first blade configuration
(soft-in-plane) and second objective function (u =0.30).

355



TWO-CELL COMPOSITE BLADE, FIRST CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=0.3)
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Figure 11.4: The 4/rev hub moments corresponding to first blade configura-
tion (soft-in-plane) and second objective function (u =0.30).
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TWO-CELL COMPOSITE BLADE, SECOND CONFIGURATION
OBJECTIVE FUNCTION J1 (MU=0.3)
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Figure 11.5: The 4/rev hub shears corresponding to second blade configura-
tion (soft-in-plane) and first objective function (u=0.30).
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TWO-CELL COMPOSITE BLADE, SECOND CONFIGURATION
OBJECTIVE FUNCTION J1 (MU=0.3)
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Figure 11.6: The 4/rev hub moments corresponding to second blade config-
uration (soft-in-plane) and first objective function (u =0.30).
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TWO-CELL COMPOSITE BLADE, SECOND CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=0.3)
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Figure 11.7: The 4/rev hub shears corresponding to second blade configura-
tion (soft-in-plane) and second objective function (u = 0.30).
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TWO-CELL COMPOSITE BLADE, SECOND CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=0.3)
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Figure 11.8: The 4/rev hub moments corresponding to second blade config-
uration (soft-in-plane) and second objective function (u =0.30).
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TWO-CELL COMPOSITE BLADE, THIRD CONFIGURATION
OBJECTIVE FUNCTION J1 (MU=0.3)
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Figure 11.9: The 4/rev hub shears corresponding to third blade configura-
tion (stiff-in-plane) and first objective function (u =0.30).
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TWO-CELL COMPOSITE BLADE, THIRD CONFIGURATION
OBJECTIVE FUNCTION J1 (MU=0.3)

0.300

a [ boseline
l ¢ .. L] . »
0 950- . " B final design
m L ] .. ...

[ and e o .

E [ ) .' ...

= 0.200- Tele N

o .... ...

z .... ...

S 0.150- . .

I L .. ...

> .... ...

g .... ...

\0.100- et e

< e’ o’

= .:.: .:.

= 0.050 .

z .... ...

(@] o« e s o

z .... .'

0.000 erel , ,
ROLLING PITCHING YAWING

Figure 11.10: The 4/rev hub moments corresponding to third blade config-
uration (stiff-in-plane) and first objective function (u =0.30).
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TWO-CELL COMPOSITE BLADE, THIRD CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=0.3)
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Figure 11.11: The 4/rev hub shears corresponding to third blade configura-
tion (stiff-in-plane) and second objective function (u =0.30).
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TWO-CELL COMPOSITE BLADE, THIRD CONFIGURATION
OBJECTIVE FUNCTION J2 (MU=0.3)

0.350-
B boseline

3 final design

(E-3)

(@] (@]
N W
w [=]
o o
1 1
o o o
A _0 & 8 & 3

0.200-

0.150

0.1004

0.0504

NONDIM. 4/REV HUB MOMENTS

0.000

PITCHING YAWING

Figure 11.12: The 4/rev hub moments corresponding to third blade config-
uration (stiff-in-plane) and second objective function
(12 =0.30).
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Appendix A

COMPARISON OF THE TRANSFORMATION MATRICES BETWEEN
DEFORMED AND UNDEFORMED COORDINATE SYSTEMS

In this appendix, the transformation matrix, [T,] , between the deformed
curvilincar coordinate system and the undeformed clement coordinate system
is compared with similar transformations by other authors.

The matrix [Tg.] is defined as:

1 0 0 cosf, o —sinb,

[Tged = | O cos8, sinby 0 1 0
0 —sinfy cos#, sinf, 0 cos6,

(A.1)
cos g, sinf; 0 |[1 0 0
—sinb; cosf, 0 || O cosp sin i
0 —sinf cosf
0 0 1

where 6,, 0,, 0, are Euler angles, and f is the pretwist angle. The relationships

between the Euler angles and the displacement variables are:

6, = ¢
v, sin f —w, cos B
sin 0,1 = . -
\/(l + u,x)2 + (v 4 cos B + w , sin B)2 + (W ycos f — v, sin ﬂ)2
\/(1 + ux)2+(vxcosﬂ + W, sin By
cosOn = . . .

2 : 2 . 2
\/(1 +u,)"+ (v cos B+ w,sin f)°+ (w, cos f — v sin ff)
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V4 C0s B+ w,sinp (A2)

sin 0( =

\/( 1+ u,,()2 + (v xcos B + W, sin ﬂ)z

1+u,

’

cos 65 =
\/(l + u,,‘)2 + (v xcos B+ w ,sin }3)2

When [T,] is simplified to second order using the ordering scheme and the

small angle assumption for ¢, it becomes:

l V,X w,x
—Vvycos(f + ¢) cos(f+ @) sin(f + ¢)
[Tge]l = | — wsin(B + ¢) (A.3)

v, sin(f + ¢) —sin(f + ¢) cos(f + @)
—w,cos(B+¢) +1/cosf +1sinp

where

1/ = (vxsinf —w,cos B)(v x cos B+ w 4 sin B (A4)
Egs. (A.2), (A.3) and (A.4) are taken from Eqgs. (3.37), (4.40) and (4.41), re-
spectively. These expressions are identical to the expressions used by Kos-

matka [56] except for a minor difference in the second order simplification of

[T4] where Kosmatka’s expression (Ref. 56, p. 78, Eq. (2.81b)) is:

[Tde] =

1 Vx W x
— v cos(f + @) — wsin(f + ¢) cos(f + ¢) sin(f + @) (A.5)
vysinf+ @)—w cos(f+¢) —sin(B+¢—1) cos(B+ ¢)
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The slight difference in elements (3,2) and (3,3) is probably due to the ordering

scheme being applied at different stages during the simplifying process.

A similar transformation between deformed and undeformed coordinate

systems obtained by Hodges and Dowell[40], and by Crespo DaSilva and

Hodges[15] is defined as:

[T)]=
1 0 0 cosf, ¢ sind,
0 cosB; siné, 0 1 0
0 —sinf; cos@, —sinfy 0
where
Bl = B + GX
w
sinf, = X
Y 2 2 2
JU 0P 4+ (v + (g
\/ (1 +u )’ + (v
cos @y =
\/ 1+ u,x)2 + (v'x)2 + (wx)2
\%
sinf, = u
\/(1 +u P+ (v
l+u
cosf, = i
2 2
\/(l + U+ (vy)
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cos 0y

cosf@, sinf, 0
~sinf, cosf, 0
0 0o |

(A.6)

(A.7)



The expressions for sin 8, , cos 8, sin 8, and cos 6, in Hodges and Dowell[40]
have a different appearance from Eq. (A.7), but can be rewritten in more sui-

table form resembling Eq. (A.7) by substituting

g—’r‘ = [+ u P (v P+ (w 2T (A8)

into Eq. (A.3) of Ref. 40. Although Hodges and Dowell{40] have a slightly
different intcrpretation for the third Euler angle 6, , which differs from the
identity shown in Eq. (A.2); for convenience in this comparison, this difference
is ignored. A second order simplification of the transformation matrix [T,]

can bc obtained by assuming

siny~w, , sinf,~v, , 6;~f+¢

(A.9)
cos Oyz 1, cosf,~ 1
and substituting into Eq. (A.6). The resulting expression is:
[ 1 Vx W ]
T =|- vvv’;i?ﬁ((ﬁ 18 vjisi‘i,’;(%’ "oy 6+ (A.10)

SinB+¢)  —sin(B+ ¢)—
—Vv'v,ilfésp(p £ é) v,xvfft:(czels(}?(ﬁl $) OSB+9)

- -

The transformation matrix [T,] was derived based on the assumption that
the pretwist angle (f) is an additive term to the third Euler angle (6,) . This
assumption was used simply for mathematical convenience. On the other
hand, the transformation matrix [T,] was derived assuming that the pretwist

angle is present before deformation. Therefore, the expression for [T,] looks
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different from [T,] in their original form, before simplifications. However,
when [T,] and [T,] are simplificd to second order, they have identical ex-
pressions for T,y, Ty, Ti3, Tays Tass T3y and identical first order terms for
T,5, T3y, T3 3 where T;; denotes the clement (i, j) of [T,] or [Tg] .

If the cffect of pretwist on the transformation matrix is ignored, i.e., # =0,
and the small angle assumption is uscd for ¢, then both sccond order ex-
pressions for [T,] and [T,] reduce to the sccond order expression by Rosen

and Friedmann[76]:

vt 0w, e e
[T,] =] " Vxt®Wx 1 é (A.11)
2 —(wx ¢Vx) —(¢+wax) 1
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Appendix B

FINITE ELEMENT MATRICES FOR THE COMPOSITE BEAM MO-
DEL

The finitc element matrices for the composite beam model are obtained by
using a cubic Hermite interpolation polynomial, {®_} , for the transverse de-
flections (v, w) and a quadratic Hermite interpolation polynomial, {®,} , for
the torsional rotation (¢), the axial deflection (u) , the warping amplitude (),
and the transverse shears at the elastic axis (Vx> Yx) Each of the element ma-

trices can be written in the partitioned form as follows:

(AL [A1] [Ap] (AW [Ass] A [A))]
[A21] [Az] [Axn] [Axyl [Axs] [Ayl [Ay]
[A31] [A3] [As3] [Asg] [Azs] [Asze]l [As]
[A] = | [Aq] [Ag] [As] [Agd [Ags] [Agd [Ag7d | (B
[Asi] [Asy] [As3] [Asy] [Ass] [Asg] [As7]
[As1] [Ag2] [Agz] [Ags]l [Ags] [Ags] [Ag7]
[A71] [Ag] [A73] [A74) [Ags] [Aze] [Aq7]

B.1 FINITE ELEMENT MATRICES ASSOCIATED WITH THE
STRAIN ENERGY VARIATION

The finite element matrices which are associated with the atrain energy
variation include the linear stiffness matrix, [KL] , and the nonlinear stiffness
matrix, [KNL] . In order to conveniently express these finite element matrices

in terms of their sub-matrices, the following constants are defined:
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EAn, = EAn,cos § — EA{,sin 8
EA{, = EAn,sin § + EA{, cos f
f}m = G,Any,cos f — G, Al sin f
G,Alp = G,Anysin f + G,Al}, cos B
GrAn, = GrAn cos p — GeAlsin
m = GrAn, sin § + GCACC cos f§
EAB; = EABcos f — EAB;sin f§
EAB, = EAB,sinf + EAB;cos
EAB¢ = EABgcos  — EAB;sin 8
EAB; = EABgsinf + EAB;cos 8
EAC; = EAC,cos § — EAC,sin
EAC, = EAC;sinf + EACycos 8
EAD, = EAD, cos § — EAD,sin p

EAD, = EAD,sin 8 + EAD,cos B

m

>
©

[

EAD/’ cos § — EAD,' sin §
EAD, = EAD/’ sin 8+ EAD,’ cos B

ﬁ"( = El,; cos § — El,, sin f
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El,, = El,sin + El,, cos
El;y = Elg cos p — El,¢ sin B
Ely, = Elgsin f + El,z cosp

The lincar stiffness matrix, [KL] , is defined by the following sub-matrices:

rle -
(kb = ), (ETy; cos B — El, sin ) {®"}{®."} T dx

tle __ _
(kb = ), (Ely,, cos f — EL,, sin f) (@}, '} dx

rl

k] = | - EAB, (o oy} dx

0

L
(kb3 = I - EAn, {mc"}{cnq'}de
0

koo
(Kl = L (- EAD, (®,"}{®,)" - (EAD + EABg) {®."}{®q} ) dx
o _
kL = J;) (= Elyp {0730} T — (GyATs + 1oEL) {07} (@) ) dx
L l' I ’” nT T~ A4 =i 17 nT
(kb = fo (— BT, {0.7}0y}T — (GrAn, — 70Ely) (0"} ) ) dx

(KL = L]' (ET,; cos B + Elyg sin §) {® " H®, "} dx = [Kp]'
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'le — —
(kL1 = | (ETyy cos p + Egy sin p) (@ 1o} dx
0

o
[KL] = ), - EAB, (0. }{o} " dx

o
KL = | " -EAL, (@} )T dx
0

.

(KL = J; (- EAD, {®."}{®g} " — (EAD; + EAB,) {0} {0} 1) dx
L —_

[K}] = J; (— Elpy {0 HOG} T = (G,AL, + 10ET,,) (. Ho '} ) dx

b _
K3 = jo (= Elyy (@O} = (GAL, — 14EL,) (. H®, '} ) dx

K51 = (kT
(K51 = k5T

l
(K3] = | "GHOJHO )T ox

(kL] = [“EaB, (@10} dx
“0
k
kL = L (EAB; {0 }{®)T + (EABy + EAB ) (&, }}T) dx

I,
(KL = J'o (EAB {9} {®g'}" + (EAB, + 7gEAB,) (@'} {0} 1) dx
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le
(k] = fo (EAB, {0y }{dy} | + (EAB)g — 10EAB)) {@'H® ) T) dx
[Kg] = (K"
[Ki) = (K31
[Ki] = [Kx]T

]e
Kk = | "EA )07 ox

L le T T
[Kis] = fo (EADg {®g'H® '} + (EADy + EABg) {®,}{® g} ") dx

n]e
Kk = | (EAT, (@G HOLT +(GyA + 10EAL,) {9 H g} 1) dx

e

ol
], (EAL, {0 }{®'} T + (G,A — 1gEAT,) {0 Hd g ) dx

[Kb]

[K5] = [ki"
[K5] = [K51T
[K5) = [K551T

(kL = kg
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le
(KL = fo (EAD; {® '} {d '} + (EABg + EAD) ({0 }{og) T +

(@} (@} )+ (EAB,5 + 2EABy + EADy) (&} {3 ") dx

L le T T
[K56] = J;) (EADI {(Dq'}{(bq'} + (EAD7+ ToEADz) {q)q’}{q)q} +
(EABg + EADY) {®_} (@'} + (EAB 3 + EAD; +

10EAB; + 19EAD,") {0 }{® g} T) dx
e
(kL] = J; (EAD, {®}{®'}" + (EADg — 14EAD)) (@} (0} +

(EAB; + EADy) {0 }{o® '} + (EAB), + EAD{ —

10EABg — 19EAD)’) {® Hd,}T) dx
[Kei] = [Kfel"
[Keal = (K5
[Kes] = [K3eI"
(K&l = [KiT

[K§s] = (KT

I,
[KE] = J; (Elgr {93{®} + (G, An, + 10EL ) ({04 }{@ )} T +

(@ H®L}T) + (G, A + 210G, AL, + T0ELy,) (@4} {0 ) dx
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le
[K%’ﬂ = -';) (EI'IC {q)ql}{q)q’}T + (GcArlc - ToElcc) {(Dq'}{q)q}T +

(GyAlp + ToEL,) {® 3P} + (G A + 190G AL —

719Gy AN, — T5ELyr) {@ HPT) dx

(K% = (K"

(K% = (K31

(K71 = (K§1"

(K% = (K"

[K%) = (K5"

[KF] = [Ke1"

(Kb = jol' (Elyy (@4 HOZ) T+ (GLAL, — 10El ) ({010 T +
(PG} ) + (GyeA — 210G An, + 13El) {9} (B} ) dx

The nonlinear stiffness matrix, [KNL] , is defined by the following non-zero

sub-matrices:
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: e _ _
(kN = f (V) (@ }{®.'} T + [EAB, cos (v , sin f — w , cos f) +
0
(El,, sin f — Ely, cos B)p] {®."}{®") T -
[%'E'_Anav’x + (sin B cos B)(S1)] (@}, 3T -

(sin § cos B)(5]) {®./}{®."}T) dx

[K‘l\'zl‘] = JL([WI sin f(v  sin f — w , cos ) +
0
(ETy cos B — L sin f)¢] {0} (@} T +
[ - 3 EATW « + (cos8) 5201 {010} T -

(sin’B)(57) {®.}{®."} ) dx
N L . T
kN1 = J' [(M;) cos B — (M) sin f] {®."}{®} dx
0
NL S :
(K> = I ([EAB,cos ﬁ(v'x sin § — W cos f) —
0
(EL,, cos B + Ely, sin f)p] {®,"H "} T -

(5 EALY x + (sin D) 5701 {0} (o) T+

(cos’8) (S (0.}, "} T) dx
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. . _ L
[Ké\zL] = j (v, {CDC'}{CDC'}T + [EAB;sin B(v , sin f — w , cos B) +
0

(El, cos f + El sin f)¢] {CDC"}{(DC”}T +
[ %E_AC;W,X + (sin B cos B)(SH] {@. "} (@} T +

(sin B cos B)(S) (@, }{®. "} T) dx
NL le A . NA? 7] T
(KE = | "0 sinf+ () cos 1 0"} ax
NL L o T
(K31 = [F @M cos f~ () sin 1 (@} (@) T +
0

[(GJ)(cos B)(— v sin B + w, cos B) + EABo¢]

@ Ho T+ (%EABOV,X) (o Ho )T dx

. e __ —
(K331 = fo ([(M,) sin B + (M) cos B] {® H®"}T +
[(GJ)(sin B)(— v sin B + w, cos B) — EAB,¢]

(@ HO T + (%—EABOW,K) @, Ho )N ax

, le _
K4 = jo [TEABg . +(T] {0107} T dx

[Kfll‘] = J:e([(EABO)( cos f)(— vsin f + Wy cos f) + EA(,¢]

(@10} + (FEAV ) (05 1O} dx
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NL l . , _
(K] = I (L(EABg)(sin f)( — v sin f + w , cos f) — EAn,¢]
0

(041 (0} + (FEAW ) (0 }Ho}T) dx
NL le | ' nT
(K3 = jo (LEACH ) {0410} dx

W -
(K3 = jo (LEADyy ) (05} (@) + (EAD ) (0g} (@) +

[%(EADO’ + EABg)V ] {0} {0} T +

[(EAB 4)(cos B)(— v, sin B + w, cos f) +

(EAD; + EAB)}p] {®g} {®. "} ") dx

\ le _
(KE1 = | *(GEADgw,) (04} (@) - EAD9) (04} 0 )T+

[%(EADO' + EABy)w ] {0} {0} +

[(EAB 4)(sin B)( — v xsin f + w cos §) —

(EAD; + EABg}p] (@} {®."} ") dx

: L
(KN = JO ((-;—EAD4¢,X) (@ 1o )T + [—;-(EAD4'+EA89)¢,X]

CRICRRTE
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NL le :
[Kgp 1 = f ((EABjp)(cos B)(— v sin f + w , cos B) +
0
G ATp9] (PHO."} + (EANLY ) (0} )T +

[54GyA + TgEAL) Y ] (9} 0} T dx

: l
[K3] = fo ([(EAB ) (sin B)( — v sin f + w ; cos B) —
G, AMy$] (Dg} (@) + (SEARwW ) (0} )T +

[—;{G,,A + 10EAL) W ,] {0} {0} T) dx
NL le | ,
(K3 = jo (36,38 ) (05} (07)T ax

‘ L
[K;I]L] - J;) ((EAB)g)(cos B)(— v, sin f + w , cos ) +
G(AT$1 (@} (") + (G-EALY ) (9710 +

[—;(GCA — 1gEAN)V,] (04} {®,} ") dx

\ L
(K3 = JO (L(EABg)(sin B)( — v y sin f + w , cos B) —
GAN$] (PHO"}T + (GEAL W) {0} o) T +

[—;-(GCA — 10EAn) W] (D} (@} T) dx

I,
(K3 = | "(4G¢ ) (o o) T d
W1 = [ "G0us,0 @gh0g) T ax
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All the other sub-matrices in [KNL] are equal to zcro.

B.2 FINITE ELEMENT MATRICES ASSOCIATED WITH THE
KINETIC ENERGY VARIATION

The finite element matrices which are associated with the kinctic energy
variation include the mass matrix, [M] , the Coriolis damping matrix, [M€] ,
the centrifugal stiffcning matrix, [K<F] , and the centrifugal force vector,
{FCF} . In order to cxpress these finite element matrices in terms of their

sub-matrices, the following constants are defined:
M7, = mng,cos f — mf,, sin B
m{,, = mng,sin B+ m{,, cos
Im,; = Im,, cos § — Im,, sin
Im,, = Im,; sin g + Im,, cos f
lmc( = Imyg, cos B - Im,, sin B
Im;, = Img sin § + Im,; cos B
mD,; = mD, cos § — mD,sin
mD, = mDsin 8 + mD,cos

hQ, = (93 +Qdh, - (@, — Q)hy — (Q,Q, + Qh, — Q Vi, + O,V — Vi,

ma——— 2 . » .
hQ, = (QF + QDhy — (Q,Q, + Q)h, — (R, — Qh, — OV, + AV, — Vi
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B, = (@F + QPh, — (0, - Qh, — (QQ, + QJhy ~ OV, + AV, — Vi,
The mass matrix, [M], is defined by the following non-zero sub-matrices:
lo T
0

rl. -
(M3 = | —mi, (@} Dy} dx

-]e
(Mig] = |~ W, {0} (g) ' dx

"e —_—
(Mys] = | * —mD, (@} g} dx

A
(Mig] = | * = Tmgg (010G} dx

L
[M17] = Jy - lm,’( {(bc'}{cpq}de

~

le
[My,] = om (o} {0} dx

I
(M3l = | "M, (@cHbg) ' dx

~ i {0/ }HPg) dx

-

[Mys] = A ~ mD, {q’c'}{q’q}de
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”le —_—
[My] = |~ —Tmy, {®/}{®g}" dx
Y0

rl

[My] = ’
0

J— , T
— Tm,y, {®.}{®g}" dx

[My] = [M;31"
[M3;] = [My]"

| T
[M33] = J‘O (Im,m+ lmCC) {qu}{tbq} dx

[Mg] = [Mq]"

[Mg] = [Mag1"

(le
(Mgl = | "m (@g}{@q) " dx
'lle T
[M45] = mDO {ch}{q)q} dx
*0

L
(Mag) = ) “m {@}Pg}T dx

e
(M7] = | "mlp (0g}{g}" dx

[Ms)] = [M5]"

[Ms;] = [Mys]"
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[Mgg] = [Mys]"

le
[Mss] = fo mD; {®g} {0 )T dx
L T
[MS6] = J;) le {q)q}{(pq} dx

1
[Mg;] = fo mD, {®}{® )} T dx

Mgl = [M1"
[Mg] = [Mye]"
[Mgg] = [Mgel"

[Mgs] = [Msg]T

I
[Mgg] = J; Imgg {®g}{®g} 7T dx

L
[Mg,] = J; Imy {®g}{®g}T dx

[My;] = (M;1"
[M7] = [My1"
[Mz4] = [My71"

[My5] = [Mg;]"
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[Mgg] = [Mg7]"
le T
[M77] = J;) lm,m {(Dq}{q)q} dx

All the other sub-matrices in [M] are equal to zero.
The Coriolis damping matrix, [M€] , is dcfined by the following non-zcro

sub-matrices:

L
(ME] = fo 20, T ({010 T — (@30, T dx

L
MG = [0 — 2@, m (B} (@} T + Q, Ty (BT +

Q, My, (@ o/} )dx

L
M§] = fo ~ 20, T {9} {® )T dx

o

L
MG = ], 20, m {®H®g} dx

L
M$] = ) 2Q, mDy {®.} {® )" dx

Cle
M5 = ) 20, g (O HP ) T dx

L
M§G] = J; 20, m{p, (@} (P} dx
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M5] = —[MEIT

r-lc —_—
[M%,] = ) - 20, Ml (0 HO) T ~ {03 {0,}T) dx

ST = [ - 20w @ o 3" d
231 — JO xmm{ c q} X

L
[MS,] = L - 20, m {® Hog}" dx

.]e
(M%) = |~ =20, mDg (@} )T dx
0

€
[MS] = | — 20y mng, (O H®g} " dx

0

I
[M$] = J' - 20, m{, (O} T dx
0

[M5i] = —M5)T
[M$] = — [M51"

1, -
M) = fo ~ 2@, Ty + Q, M) {0} {0} T dx

I _ —_
M$] = fo - 2(Q, mD, + Q, mD,) {® }{®,} dx

I — —
[M$,] = fo - 2(Qy Tmgg + Q, Tmy,) (@ Ho} T dx
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I _ .
M$] = J - 2(Q, Tm,y + 0, Tm,,) (B} {®}" dx
0

[M§] = - [ME1"
[MB] = - [M30"
(M5] = - M5]T
[M§] = - M1"
[MG] = - [M&]"
(M§G] = - [M§5)"
(Mgl = — Mgl
Mgl = - [M31"
MG = - [M5"
M5] = - M[)"
[M%] = - [M§]"
[M35] = - [M5]"

All the other sub-matrices in [M€] are equal to zero.
The centrifugal stiffening matrix, [K€F] , is defined by the following sub-

matrices:

387



I, .
K1 = [“1- @2+ 0)m (03(0d" - @0, + ) Wiy (O HO) T -
0

@, - Q) Ty, (O HP) T 1dx

l | |
(KT = jo (@0, - ) m (03037 - (0, + Q) Ty (010 -

Q2 + Q) Ml (O H T + (A, — (,Q + Q) XI m{y, cos’B

(O /1Ty dx

\ . _
(k7 = fo ([Q,0, — O0,) Ty + @2+ Q) W] {0} ()T -

(b0, + (@2 + Q) xI ml, (@} Py} T ) dx

[Ki41 = jo ) [(Q,Q, + Q) m {OHO}T + Q% + Q) Wi, {0} {®g} 1 dx
[K$F] = fol‘ [(Q,Q, + Q,)mDy{®} {® T + (@2 + Q2)mD | {®.'} (@} " 1dx
[Kfs] = jol’ (2,9, + Q)mn (03T +(©QF + Q)Tmy (@} { Py} ldx
KT = jol' [(Q,Q, + Qmlp (P HOHT + (93 + QJ)Im, (&} Dy} " 1dx

L . .
(K21 - L (@0, + Q) m (DHBI — (@0, — ) g (PHP ) —

Q. — Q) Ml (O He S + [, — (2,9, + Q) x] m{, cos’f

{@©}{@ )7y dx
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le . —_—_—
(KSF) = fo [- @2+ Q) m (0} - (2,0, - 0 Wl (9} ()T -

QQ, + Q) miy (O HD )T 1dx

le . ——
(K31 = L (- [Q,Q, + 0 Ml + @2 + Q)] (@} (0g)T +

(R, + (QF + Q) x] iy (@ H P} T ) dx

le : —_
K1 = 190, -Q)m (@) (@}T + @2+ Q) ml, (@} {Dg} ] dx

(e . S
[K$F] = ), (2,2, — 2 )mDo{®} (@} T + (22 + Q2D @'} Py} 1dx

L . _

[KF] = ), [(Q,Q, — Q)mng (O HP ) T + Q2+ Q)Tmy, (0 }{®g} ' 1dx
L . _

(KSF] = fo (0,0, — )Ml {0 H{OT + (@2 + QDM (@} Tldx

L : S
(KST1 = [ @y, + ) + 0 + 0 AT (9g) 0l -

(A€, + (@2 + Q) xIml, (@} {®} T ) dx

] o
(K§F] = jo (- (@0, - 0 Wy + (@2 + Q) ] (0} (0T +

(RO, + (QF + Q2) x] Ty (@ }H®}T ) dx
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]e
[K%F] = J;) {(Qg - Q?) [(Img — Im,,)( coszﬁ — sin®p) — 41m,, sin f cos f]

- 4Q,Q, [(Img — Im,,) sin pcosp + Im,,( coszﬁ - sinzﬂ) 1}

(O HP, ) dx

g

(K1 = J: [(©Q,Q, — Q) g — (0, + Q) ml] {PHPg} dx
(KSFy = J'o * (@9, - ) 7D, - @, + &) D;] {®4}{®g)T dx
(kSF = Ll‘ [QQ, - 0,) Ty — (@,Q, + Q) Ty, ] {0y} (0g)T dx
(K1 = L . [(Q,Q, — Q) Tm, — (Q,Q, + Q) Tm,, ] {PHP} dx
K1 = -:' [(©Q,Qy — ) m (B} 3T +(@QF + Q) i, (P HO} 1dx

l, . .
(KZ1 = | (00, +2)m (0g){®d) + (@) + )Ml (05} (@) 1 dx

rle ) o
[(KE = ) 100, +0) Wy~ (@8 — )Ml (95 (0g) dx

le
(K& = ) - @+ Q) m (0} {0y} dx

e
[K$F) = ) — (@2 + Q) mDy (@ Hdy) " dx
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< 'le
(K1 = | (@ + Q) mny, (@g} (P} dx
0

.le
(K& = | " @+ )mi, CRTERER

le . —

[K$(T = J [(©Q,Q, — Q)mDy{P} D} T + (@2 + QImD, (@} {d} T 1dx
0

[KS] = J ) [(©Q,Q, + Q)mDy{®H® )T + (2 + Q)mD{d} {0} 1dx
0

le — o
[K$F) = L [(©Q,Q, + Q) MD| — (@0, — @) mD,] {PHP} " dx

(K& = (K1

.

(K$F) = ), - @2+ Q) mD; {®} @y} dx

.le
K$F1 = |~ @2+ 0)mD, {@}{®y}" dx

L

L.
[K$F] = ) ~ @2+ QD) mD, (@ }{® ) dx

Ple . e
K§1 = J, U8y~ Qmng (@) (@7 + (@2 + O)Im {0} (@} 1dx

le . —
(KS] = L [(QQ, + Q)mng (@ (@3 T +(©QF + O)my, (@} o} 1
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- I o D
K& = J (@0, + Q) Ty — (@0, - Q) Tmp, ] {Pg}{Pg} dx
0
(K& 1 = [KG1"
(K1 = K1

ok
K1 = | - @+ ) Imy (@} {dg3 " dx
“0

le
(K$F) = ) — (@2 + Q) Imyg (@} {Pg} " dx

le . _
[K§] = ), @0y~ Qmin(0g) (@37 +(Q2 + QD)Tm, (@} (@} T Idx

rle . —
(K721 = ), L0, + 2 mE (@) (037 + @2 + QA (@} {0} Tl

(le e e
[KS] = ), [(QQ, + Q) Tm, — (€, ~ Q) Tm,, ] {9 }{Py} T dx

(K51 = [KF 1"
[K%1 = (K51
(K71 = [Ke 1"
[K$F] = J:’ — (@ + Q) Im,, {®}{Py}" dx

The centrifugal force vector, {FCF} , is defined by the following sub-vectors:
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(FCF} = j'e({— [RG3, — (@0, + 0 x] m — (QF + Q) iy +
0

(Q,Q, ~ Q) Ml }{®} + (M, + (@] + Q) x] Ty, —
QQ, - Qz)(lmcc coszﬂ +Im,, sinzﬂ — 2Im,; sin § cos p)—

QQ, + Qy) [(Img - lm,m)sin B cos B+ Im,( coszﬂ — sinzﬁ) 1}

{P.}) dx

: L _ : __
(FSF} = fo U - [h, — (@0, - Q) xIm — (Q2 + Q) ml, +

(@QQ, + Q) TTZH®) + {[A, + (@3 + Q) xI ml, -
@, — Q,) [(Img — Im,,)sin § cos B + Im,,( cos?f — sin?p) ] -

Q,Q, + Q,)(Im,, cos?p + Img, sinB + 2Im,; sin § cos f) }

{®.}) dx

Il — . _ R
(F$Fy = fo { - (RO, - (QQ, — QX + [hQ, — (Q,Q, + Q)XImly, +
(Im,, + Im;)Q, —
(Q)Z, - Q;") [(Imgr — Im,,)sin B cos B+ Im, r( cos2ﬁ - sinzﬂ) ]+

0,0, [(Img; — Im,,)( cos’ — sin®) — 4Im,, sin f cos 1} {®y} dx

(F$F} = Ll'{— [hQY, + Q% + Q) X1 m + (Q,Q, — Q) Wiy, +

(Q,0, + Q)M H,) dx
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. L - R
(F$H =I { — (B, + (@ + Q) x] mDy + (,Q, — Q) mD, +
0

(Q,Q, + Q) mDy}{®,} dx

{Fg'} = fle {— [hQ, + (Q§+ Q2)x] mng, + @Q,Q, — Q) Tmy +
0

(Q,Q, + Q) Tmg, }{®,} dx

I, . R
(F§T} = fo { = (RO, + (@) + Q2 X mip, + (2,0 — ) Tmyg +

(Q,Q, + Q,)Im,, }{®} dx

B.3 FINITE ELEMENT MATRICES ASSOCIATED WITH THE
VIRTUAL WORK OF THE EXTERNAL LOADS

The finite element matrices which are associated with the virtual work of
the external loads include the applied moment stiffening matrix, [K'] , and the

applied force vector, {F'} .

The applied moment stiffening matrix, [K'] , has the following non-zero

sub-matrices:

L,
(Kl = [ ax (@030} ax
0

I
(K31 = J, (®) (@) dx

L
(K3 = | * — ay (9H®) T x
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(K32 = | " =, (@gHo} dx

I (e i T
[K.“] = JO qz {q)q }{(Dc} dx

1
Kid = | —q, {0,/ }{®/3Td
[ 4‘,] j;) qy{ q}{ } X

All the other sub-matrices in [K!] are equal to zero.

The non-zero sub-vectors associated with the applied force vector, {F'} ,
are:
le

{F}} = ), -y (@ —qz (@ ok

nle
(F3} = ) "(= . (®c} + 4y (0D dx

I
{F3} = |~ ax{0g) x

.le
(Fa) = | " = pe {@g} dx
0

All the other sub-vectors in {F!} are equal to zero.
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Appendix C
LOCAL-TO-GLOBAL TRANSFORMATION MATRICES

C.I  TRANSFORMATION FOR ROTATIONAL DEGREES OF
FREEDOM

Assumec that cach transformation matrix is written in the form

Ty T Tz

[TI=]| Ty Ty Ty
T3y Tap Taa

The nonzero elements of the matrix [TX] are:

G

T'l(l = c0s Agsin AWy — sin A sinzAavg

T§, = Cos AssinzAavg

T§2 = —sin A;sin Aad)G

T:l;(l sinzAs cos Aawg

Il

T:'fg, cos A sin A,( sin A cos Aa¢G — cos Aswg)
The nonzero elements of the matrix [T€] are:

G

Tfl = cos Agsin Aawg - sin Ag sinzAav'x

sz = —c0s Agsin Aa¢G
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= —sin Ag sinzAaqSG

24 .G .
cos Agsin“A,v y + sin Agsin A, w

G

— sin Agsin Aad:G

cos A sinzAaqSG

sinzAs cos Aawg + cos Agsin A cos A, sin Aavg

- sinzAs cos Aach + coszAs sin Aavg

cos Agsin A (sin Agcos Aa¢G — oS Aswg)

The nonzero elements of the matrix [TM] are:

cos Agsin A,w

G

X

—sin A, sinzAa\"g

— cos A sin Aaqu

— sin A, sin?A,¢C

. 20 G, . . .
cos Agsin“A, V5 + sin Agsin A, w3

G

— sin Agsin Aaéo

cos A sinz/\aqbG

sinzAs cos A,w

G
X

+ cos Agsin Agcos A, sin A,v
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Ty, = — sinzAs cos Aad)G + coszAs sin Aa\'/,(;{

T%’;’; = ¢os Agsin A, sin A cos AadSG — oS As\vf,f)

C.2 TRANSFORMATION FOR THE VECTOR OF NODAL DEGREES
OF FREEDOM

The transformation for the vector of nodal degrees of freedom are 23 by 23
matrices where a typical clement at the i-th row and j-th column of a trans-
formation matrix [A] is denoted by A(j, j).

The nonzero elements of the linear transformation matrix [ALl] are:
AL(I, 1) = cos Aq
L . .
A™(1,5) = sinAgsin A,
L .
AT(1,12) = sin Agcos A,
L
A2,2) = cosA,
L .
A7(2,9) = —sinA,
L
A™(3,3) = cos Aq
AY3,7) = sinAgsinA,
AL(3, 14) = sin Agcos A,

AL(4, 4) = cos A,
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Al4,11) = —sinA,

L .
A(5,5) = cos A,

L .
A7(5,12) = —sinA,

L . .
A™(6,2) = —sinAgsinA,
AY6, 6) = cos A
AY6,9) = —sin A cosA,

AY7,7) = cosA,

AY7,14) = —sinA,
L \ .
A™(8,4) = —sinAgsinA,
L .
A8, 11) = —sinAjcos A,

AY9,2) = cosAgsin A,
L .

A™(9,6) = sin A

AL9,9) = cos A cos A,

Al10,2)= -%—cos A,sin A,

AL(10,4)= % cos Agsin A,
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AL(10,6) = —sin A,

L
2

Al(10,8) = = sin A

1
2
A0, 10) = cos Agcos A,
Al(11,4) = cosAgsin A,
L .
A™(11,8) = sin A,
AL(ll,ll) = cosAgcos A,
L .
AT(12,1) = —sinAg
AY(12,5) = cosA sin A,

Al12,12) = cos A cos A,

Alas, 1y = —%-sinAs
Al13,3) = —-;—sinAs
A"(l3,5)=—;—cosAssinAa
AL13,7)= L cos A, sin A
’ 2 s a

Al13,13) = cos A cos A,
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Al14,3) = —sin A,
AY14,7) = cosAgsinA,
A4, 14) = cos A cos A,
AM15,15) = cos Agcos A,
AL(l6, 16) = cos Agcos A,
AL(I7, 17) = cos Agcos A,
AL(18,18) = cosA,
AY19,19) = cosA,
AN20,20) = cosA,
Al21,18) = —sinA sinA,
AM21,21) = cos A,
AY22,19) = —sinA sin A,
AY22,22) = cosA,
AN23,20) = —sin A sin A,

AY23,23) = cos A,

The nonzero elements of the nonlinear transformation matrix [AK] are:
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AK(2,2) = cos Agsin Agcos A, sin A¢’ — cosAsin AW
AK@,9) = SinzAscos Aawfx

AK(6,6) = —sin A sin A¢’

AK(()» 9) = —cos A sinzAav‘,'x

AX(9,9) = cos Asin Aa“’,lx — sin A sinzAav','x

The nonzero elements of the nonlinear transformation matrix [A€] are:

A%@2,2) = cos Agsin Agcos A, sin /\adaJ - coszAs sin Aawfx
AS2,6) = sin®A cos A ¢’ — cos®A sin A,V

A%@2,9) = sinzAs cos Aaw:'x + cos Agsin Agcos A, sin Aa"',lx

AC(6, 2) = —cos A sinzl\act»J
AS6,6) = —sin A,sin A,¢’
AS(6,9) = —cos Aysin®A v, — sin Agsin AW

A%9,2) = —sin Agsin?A¢’
AC(9,6) = cos Agsin A,¢’
A%9,9) = cos Agsin Aawfx — sin Aq sinz/\av']x

The nonzero elements of the nonlinear transformation matrix [AM] are:
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AM(2, 2) = cos Agsin Agcos A, sin Aadfl - coszl\S sin Aav'v,Jx
AM(Z, 6) = sinzAs cos Aad:J - coszAs sin Aa\'/'Jx

AM(Z, 9) = sinzl\s cos Aanx + cos Agsin Agcos A, sin Aa\'/fx

AMe, 2) = —cosAg sinzl\and’J
AM(6, 6) = —sin Agsin AM"
AM6,9) = —cos A, sin?A, vy — sin A sin A W
AM(9, 2) = —sin A, sinzAati’J

AM, 6) = cos Agsin AadaJ
AM9,9) = cos Agsin AW — sin A sin?A v,

The superscript J in the expressions given above denotes the nodal value at the

junction of the straight portion and the swept tip.
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